1L.OGIC

BN 5304804 0011588 842 EELLC

L64702
JPEG Coprocessor
Technical Manual

July 1993

5304804 DOL1589 789 EALLC

This document is preliminary. As such, it contains data derived from func-
tional simulations and performance estimates. LSI Logic has not verified either
the functional descriptions, or the eléctrical and mechanical specifications
using production parts.

First Edition

Document Number MD71-000102-99 A

This document applies to revision B of the 1.64702 and.to all subsequent ver-
sions unless otherwise indicated in a subsequent edition or an update to this
edition of the document.

Publications are stocked at the address given below. Requests should be
addressed to:

LSI Logic Corporation

Literature Distribution, M/S D-102
1551 McCarthy Boulevard
Milpitas, CA 95035

Fax: 408.433.8989

LSI Logic Corporation reserves the right to make changes to any products
herein at any time without notice. LSI Logic does not assume any responsibil-
ity or liability arising out of the application or use of any product described
herein, except as expressly agreed to in writing by LSI Logic; nor does the
purchase or use of a product from LSI Logic convey a license under any
patent rights, copyrights, trademark rights, or any other of the intellectual
property rights of LSI Logic or third parties.

© 1993 LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT

LSI Logic logo design is a registered trademark of LSI Logic Corporation. All
other brand and product names may be trademarks of their respective
companies.

B 5304804 0011590 4TO MALLC

Preface

This book is the primary reference and user’s manual for the L64702 JPEG
Coprocessor. It contains a complete functional description for the L64702 and
includes complete physical and electrical specifications for the L64702.

Audience This book assumes that you have some familiarity with digital signal process-
ing, microprocessors, and related support devices. The people who benefit
from this book are:

B Engineers and managers who are evaluating the L64702 JPEG Coprocessor
for possible use in a system.

B Engineers who are designing the L64702 into a system.

Organization This book has the following chapters:

W Chapter 1, Introduction, defines the general characteristics and capabilities
of the L64702.

B Chapter 2, Interface Description, describes the characteristics of the
164702 signals that are used to interface with an external CPU, DMA con-
troller, or video memory.

B Chapter 3, Internal Registers and Data Tables, describes how data is rep-
resented inside the L64702. This chapter also provides a summary of the
1L.64702 registers and tables.

B Chapter 4, System Interface, describes the CPU and DMA transfer modes
supported by the L64702.

M Chapter 5, JPEG Processing Unit, discusses the role of the 1.64702 JPEG
Coprocessor in image compression and decompression.

B Chapter 6, Compressed Image Data Structure, describes the JPEG file
structure and organization for both compressed and decompressed images.

B Chapter 7, Video Memory Organization, describes how the image data is
represented in external video memory and describes raster-to-block conver-
sion, image sub-sampling, and color memory organization.

Preface fii

B 5304804 0011591 337 EMELLC

Chapter 8, Pixel Data Processing Overview, presents a summary of pre-
and post-processing the L64702 performs on image data. It describes the
functions of the Pixel Reformatting Buffer, Color Space Converter, MCU
Buffer, and explains level shifting and range limiting.

Chapter 9, Video Memory Interface Port, describes the interface between
the 164702 and an external video memory bus. Included are descriptions
of the video bus arbitration protocol, video bus request criteria, and video
bus interface timing details.

Chapter 10, System Interface Port, discusses the interface timing details
of CPU and DMA transfers to and from various registers and tables within
the L64702.

Chapter 11, System Software Control, describes how the system software
interacts with the L64702 in order to perform L64702 initialization as well
as image compression and decompression.

Chapter 12, Specifications, describes the electrical and mechanical charac-
teristics of the L64702.

Appendix A, The JVieW™ (JPEG Video-in-a-Window) Multimedia Kit,
describes the JVieW evaluation board, a single-board multimedia design
that allows full-motion video to be displayed on a PC.

Appendix B, Huffman Table Software Listing, describes the source code
that generates the Huffman Tables stored in the L64702 RAM.

Appendix C, Customer Feedback, includes a form that you may use to
fax us your comments about this document.

Related
Publications

JPEG Chipset Technical Manual, Order No. 11400.A

JVieW (JPEG Video in a Window) Evaluation Kit User’s Guide, Document No.
MD75-000102-99 A

Conventions Used
in this Manual

The first time a word or phrase is defined in this manual, it is italicized.
The following signal naming conventions are used throughout this manual:

B A level-significant signal that is true or valid when the signal is LOW

always has an overbar () over its name.

B An edge-significant signal that initiates actions on a HIGH-to-LOW transi-

tion always has an overbar () over its name.

The word assert means to drive a signal true or active. The word deassert
means to drive a signal false or inactive.

Preface

I 5304404 0011592 273 EELLC

Hexadecimal numbers are indicated by the prefix “0x™ before the number—for
example, 0x32CF. Binary numbers are indicated by a subscripted “2” follow-
ing the number—for example, 0011.0010.1100.1111,.

Preface v

BN 5304404 0011593 10T EELLC

Contents
Chapter 1 Introduction 1-1
1.1 Processor and System Overview 1-1
1.2 Features 1-5
1.3 System Description 1-8
Coprocessor Configuration 1-8
Stand-Alone Configuration 1-10
Single-Bus Coprocessor Configuration 1-11
1.4 JPEG Image Compression 1-12
1.5 Standards Compliance 1-13
CCIR 601 (Mod F) 1-13
JPEG DIS 10918 1-13
1.6 Terms and Concepts 1-14
Minimum Coded Unit (MCU) 1-14
MCU Boundaries 1-17
Display Active Image Area 1-17
Compressed Image Active Window 1-18
Color Conversion 1-18
Subsampling 1-19
Image Reconstruction 1-20
Raster-to-Block Conversion 1-20
DCT Functions 1-21
Quantization Function 1-22
Zigzag Ordering 1-25
DPCM Coding 1-27
Run-Length Coding 1-27
Variable-Length Coding (Huffman Coding) 1-27
Encoding Example 1-28
1.7 Applications 1-30
Chapter 2 Interface Description 2-1
Contents vii

R 5304804 0011594 O4b EELLC

2.1 System Interface Signals 2-2
2.2 Clock/Reset Interface Signals 2-4
2.3 Video Memory Interface Signals 2-4
2.4 Video Bus Arbitration Signals 2-8
Chapter3 Internal Registers and Data Tables 3-1
3.1 L64702 Register Overview 3-1
3.2 Group O Address Pointer Register (APR) 33
3.3 Group 1 Registers 33
System Mode Register (SMR) 3-3
System Status Register (STS) 3-8

3.4 Group 2 Registers and Tables 3-11
Group 2 Register and Table Summary 3-13
Huffman Code Tables 3-14
System Configuration Register (SCR) 3-15

JPEG Configuration Register (JCR) 3-19

Active Height Register (AH) 3-22

Active Width Register (AW) 3.22

Image Width Register (IW) 323

Macro Block Size Register (MBS) 3-25

Macro Block Size in the Y Direction Register (MBS_Y) 3-26

Macro Block Size in the X Direction Register (MBS_X) 3-28
DCT/IDCT Factors 3-30
Quantization Tables 3-30

MCU Horizontal Delay Register (MCU_HD) 3-31

MCU Vertical Delay Register (MCU_VD) 3-31
Height/Width Component Registers 3-32
Display Pitch Registers 3-34

Start Address Registers 3-34
Transfer-Through Address Register 3-35
Transfer Start Address Register 3-35
Transfer Increment Register 3-36

Color Space Conversion Registers (CSC) 3-36

3.5 Group 3 FIFO 3-37
Accessing the FIFO 3-38

Video Memory Transfer-through Mode 3-39

viii

Contents

B 5304804 0011595 Tac EELLC

Chapter 4 System Interface 4-1
4.1 CPU and DMA Transfer Mode Overview 4-1

42 CPU Transfer Mode 4-3

4.3 DMA Transfer Mode 4-5

Initialization of Group 2 Tables and Registers Using DMA 4-7

Reading and Writing the Group 3 FIFO Using DMA 4-7

Chapter 5 JPEG Processing Unit 5-1
5.1 JPU Overview 5-1

5.2 FDCT/ADCT Block 5-3

5.3 Quantizer/ Inverse Quantizer Block 5-6

5.4 Zigzag Conversion 5-7

5.5 Differential/Inverse Differential Pulse Code Modulation 5-8

5.6 Variable-Length Coding and Decoding (VLC/VLD) 5-8

Chapter 6 Compressed Image Data Structure 6-1
6.1 JPEG Interchange Format 6-1

Frame Data 6-2

Scan Data 6-2

Entropy-Coded Segment (ECS) 6-2

6.2 Compressed Data Segments 6-3

6.3 Decompression Code Data Structure 6-5

Reset Marker Code (RSTm) 6-6

End of Image Marker Code (EOI) 6-6

Other Marker Codes 6-6

Chapter 7 Video Memory Organization 7-1
7.1 Video Memory Address Space 7-1

7.2 Raster-to-Block Conversion 7-3

7.3 Color Memory Organization 7-3

Multisource Color Memory Organization 7-4

Unpacked Color Memory Organization 7-8

Packed Color Memory Organization 7-12

Components Sequential Memory Organization 7-15

| 7.4 Image Subsampling 7-21
7.5 Scrolling in Compressed Files 7-22

Contents ix

B 5304804 001159k 919 MRLLC

7.6 Active Window and Two-Dimensional Addressing 7-24
Active Window Start Address 7-25

Active Window Width 7-26

Active Window Height 7-27

Active Height and Width Example 7-29

Active Window Display Pitch 7-29
Chapter 8 Pixel Data Processing Overview 8-1
8.1 Pixel Data Reformatting Buffer (PRB) 8-1
8.2 Color Space Converter (CSC) 8-2
RGB-to-YCbCr 8-4
YCbCr-to-RGB 8-4
RGB-to-Y (Gray) 8-5
Y-to-RGB 8-5

Color Space Conversion Bypass 8-5

8.3 Level Shifting and Range Limiting 8-5
8.4 MCU Buffer 8-6
Chapter 9 Video Memory Interface Port 9-1
9.1 Video Bus Arbitration Protocol 9-1
9.2 Video Bus Request Criteria and Priorities 9-3
Video Memory Transfer Request Criteria 9-4

Video Memory Refresh Request Criteria 9-4

Video Memory Read or Write Cycle Request Criteria 9-4

9.3 Video Bus Interface Timing 9-5
VRAM Serial Port Control 9-9

Video Memory Early Write Cycle 9-11

Video Memory Read Cycle 9-13
CAS-before-RAS Video Memory Refresh Cycle 9-14
Normal Read Transfer Cycle DRAM-TO-SAM (NRT) 9-16

Split Read Transfer Cycle DRAM-to-SAM (SRT) 9-18
Pseudo-Write Transfer Cycle (PWT) 9-20
Alternate Write Transfer SAM-to-DRAM (AWT) 9-22

Video Memory Cycle with Wait States 9-24
Chapter 10 System Interface Port 10-1
10.1 CPU Transfer Mode 10-1
CPU Write to the Address Pointer Register (APR) 10-2

CPU Read from the Address Pointer Register (APR) 10-2

X Contents

B 5304804 0011597 855 MELLC

CPU Read from the Status Register (STS) 10-4

CPU Write to the System Mode Register (SMR) 10-5

CPU Read from the Registers and Tables 10-6

CPU Write to the Registers and Tables 10-7

CPU Read from the FIFO 10-8

CPU Write to the FIFO 10-9

10.2 DMA Transfer Mode 10-10

DMA Write Operation 10-10

DMA Read Operation 10-11

Chapter 11 System Software Control 11-1
11.1 Initialization Task 11-1

11.2 Image Compression Task 11-2

11.3 Image Decompression Task 11-4

Chapter 12 Specifications 12-1
12.1 AC Timing 12-1

CLK and RESET Timing 12-4

System Port Timing 12-4

Video Port Timing 12-7

12.2 Electrical Requirements 12-8

12.3 Packaging 12-11

Appendix A The JVieW (JPEG Video in a Window) Evaluation Kit A-1
A.l Overview A-1

A.2 Kit Contents A-2

A.3 System Requirements A-2

A.4 Features Summary A-3

A.5 JVieW Board in a Multimedia PC System A-3

A6 JVieW Board Layout A-5

A7 JVieW Board Functional Description A-6

Video Capture A-7

Video/VGA Display A-8

Frame Buffer A9

Compression/ Decompression A-11

PC Interface A-11

Appendix B Hufiman Table Software Listing B-1

Contents X

B 5304804 0011598 791 MELLC

Appendix C Customer Feedback C-1

Figures 1.1 L64702 General Block Diagram 1-2
1.2 L64702 Detailed Block Diagram 1-3
1.3 File Interchange in a Microcomputer System 1-8
1.4 Coprocessor System Configuration 1-9
1.5 Stand-Alone System 1-11
1.6 Single-Bus Coprocessor Configuration 1-12
1.7 Construction of an MCU from Three Color Components 1-15
1.8 Construction of an MCU from Four Color Components 1-16
1.9 Active Image Area 1-17
1.10 Compressed Image Active Window 1-18
1.11 Image Reconstruction from YCrCh to RGB 1-20
1.12 Raster-to-Block Conversion 1-21
1.13 Quantization Functions 1-23
1.14 Quantization Example 1-24
1.15 Zigzag Ordering 1-25
1.16 Raster and Zigzag Encoding Example 1-26
1.17 Encoding Example 1-28
1.18 Codeword Structure 1-30
2.1 L64702 Logic Symbol 2-1
3.1 Address Pointer Register 3-3
3.2 System Mode Register 3-3
33 System Status Register 3-8
3.4 Overall Group 2 Memory Mapping 3-12
3.5 System Configuration Register 3-15
3.6 Image Capture and Display Modes 3-17
3.7 JPEG Configuration Register (JCR) 3-19
3.8 Active Height Register (AH) 3-22
39 Active Image Area 3-24
3.10 Display Pitch 3-24
3.11 Starting Address 3-24
3.12 Macro Block Size Register (MBS) 3.25
3.13 DCT/IDCT Table 3-30
3.14 Quantization Tables 3-31
3.15 W, and H,, in the Active Image 3-32
3.16 SA_0LOW and HIGH Registers 3-34
3.17 SA_1 LOW and HIGH Registers 3-34

Xii Contents

B 5304804 0011599 bed EELLC

3.18 SA_2 LOW and HIGH Registers 3-34
3.19 SA_3 LOW and HIGH Registers 3-35
3.20 TRTH_ADDR Register 3-35
3.21 TSA Register 3-35
3.22 Video Memory Transfer-Through Mode 3-40
4.1 L64702 Memory-Mapped CPU System Interface 43
42 DMA Transfer Configuration 4-6
43 DMA Burst Transfer Timing 4-8
44 DMA Burst Transfer Timing with EOI, RI, or IMC Condition 4-8
4.5 DMA Transfer Protocol 49
5.1 JPEG Image Processing Operations 5-1
5.2 JPEG Processing Unit Block Diagram 5-2
5.3 FDCT and IDCT Factors 5-5
5.4 Luminance and Chrominance Quantization Tables 5-7
5.5 Zigzag Sequence of Quantized DCT Coefficients 5-7
6.1 JPEG Baseline Interchange Format Syntax 6-2
6.2 L64702-created Code Data Streams 6-4
6.3 Compressed Data Structures Supplied to 1.64702 6-7
7.1 Logical Memory Address Space 7-2
7.2 Physical Memory Organization 7-2
7.3 Multisource Color Memory Organization 7-5
7.4 Multisource Color Video Bus Activity 7-6
7.5 Multisource Color Addressing Scheme 7-7
7.6 Three-dimensional 8 x 8 Multisource Display Image 7-8
7.7 Unpacked Color Memory Organization 79
7.8 Unpacked Color Video Bus Activity 7-10
7.9 Unpacked Color Memory Organization 7-11
1 7.10 Three-dimensional 8 x 8 Unpacked Display Image 7-12
E 7.11 Packed Color Memory Organization 7-13
7.12 Packed Color Video Bus Activity 7-13
7.13 Packed Color Addressing Scheme 7-14
7.14 Three-dimensional 8 x 8 Packed Display Image 7-15
7.15 Components Sequential Memory Organization 7-17
7.16 Components Sequential Addressing Scheme 7-19
7.17 Components Sequential Video Bus Activity 7-20
7.18 Color Conversion and Subsampling from RGB to YCrCb 7-21
7.19 Color Conversion and Subsampling from RGB to Y 7-22
7.20 Active Decompressed Area Inside of a Compressed Image 7-23
721 164702 Active Window Area and 2-D Addressing Scheme 7-25
Contents Xiif

5304804 0011600 17T MALLC

Xiv

8.1
8.2
83
8.4
8.5
8.6
8.7
8.8
9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
99
9.10
9.11
9.12
9.13
9.14
9.15
10.1
10.2
103
104
10.5
10.6
10.7
10.8
10.9

Pixel Data Processing Block Diagram

Pixel Data Reformatting Concept

Color Space Conversion Unit

Color Space Conversion for Unsigned Numbers
Range Limiters and Level Shifter

MCU Buffer Configuration

Maximum Data Rates

MCU Boundary Schemes

Regular Video Bus Arbitration Protocol

Video Bus Arbitration Preemption Protocol
Video Bus Internal Arbitration Block

Typical Row/Column Address Multiplexing Circuitry
Row and Column Address Phases of Memory Cycle
Display Mode Serial Control Timing

Capture Mode Serial Control Timing
Video-Memory, Early-Write Operation Timing
Video Memory Read Operation Timing
CAS-before-RAS Memory Refresh Cycle
Normal Read Transfer Cycle DRAM-to-SAM (NRT)
Split Read Transfer Cycle DRAM-to-SAM (SRT)
Pseudo Write Transfer Cycle (PWT)

Alternate Write Transfer Cycle (AWT)

Video Memory Cycle With Wait States

CPU Write to the APR Register

CPU Read from the APR Register

CPU Read from the STS Register

CPU Write to the SMR Register

CPU Read from the Registers and Tables

CPU Write to the Registers and Tables

CPU Read from the FIFO

CPU Write to the FIFO

DMA Write Cycle Timing

10.10 DMA Read Cycle Timing

11.1
11.2
12.1
122
12.3

Compression Program Flow Example
Decompression Program Flow Example
L64702 CLK Timing

164702 RESET Timing

CPU Write Cycle Timing

Contents

8-2
8-3
8-4

8-9

9-10
9-11
9-12
9-14
9-15
9-17
9-19
9-21
9-23
9-24
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
11-3
11-5
12-4
12-4
12-5

B 5304804 0011601 OOL EELLC

12.4 CPU Read Cycle Timing 12-5
12.5 CPU Write Cycle to the SMR Register 12-6
12.6 CPU Read Cycle from the STS Register 12-6
12.7 DMA Write Cycle Timing 12-7
12.8 DMA Read Cycle Timing 12-7
12.9 Video Port Timing 12-8
12.10 100-Pin PQFP Pinout 12-13
12.11 100-Pin PQFP Mechanical Drawing 12-14
A.1 PC Muitimedia System with JVieW Board A-4
A.2 IVieW Board Layout A5
A3 IVieW Hardware Block Diagram A-7
A.4 Video Capture A-8
A.5 Video/VGA Display with Chroma-Key A-8
A.6 Frame Buffer Block Diagram A-10
A7 164702 Compression/Decompression A-11
A.8 PCISA Bus Interface A-12
Tables 1.1 Quantization Examples 1-24
1.2 AC Coefficient Size Table 1-29
1.3 Sample AC Code Table 1-29
3.1 Accessing the L64702 Internal Groups 3-2
3.2 Group 2 Registers and Tables Summary 3-13
3.3 Huffman Tables 3-14
34 W, Values 3-33
3.5 H, Values 3-33
3.6 Color Space Conversion Registers 3-36
i 4.1 Accessing the L64702 Internal Groups 4-2
4 7.1 IDS Field Encoding 7-4
7.2 Number of Display Pixels or Words 7-27
7.3 Number of Display Lines 7-28
74 W, and AW Values for the Color Modes 7-29
7.5 W, and AW Values for Components Sequential Mode 7-29
7.6 H, and AH Values for Components Sequential Mode 7-29
9.1 VRAM/DRAM Control Truth Table 9-7
9.2 SRT Example 9-10
9.3 AWT Example 9-11
12.1 AC Timing Values 12-2

Contents Xv

Bl 5304804 0011bO2 T2 EELLC

12.2 Absolute Maximum Ratings 12-8
12.3 Recommended Operating Conditions 12-8
12.4 Capacitance 12-8
12.5 DC Characteristics 12-9
12.6 Pin Description Summary 12-10
12.7 L64702 Ordering Information 12-11
12.8 = Alphabetical Pin List for the 100-pin PQFP 12-12
Equations 1.1 RGB to YCrCb Conversion 1-19
1.2 YCrCb to RGB Conversion 1-19
1.3 Forward DCT 1-21
14 Inverse DCT 1-21
1.5 Forward Quantization 1-22
1.6 Inverse Quantization 1-22
1.7 DPCM Coding 1-27
1.8 DCT Coefficient Calculation 1-28
3.1 Active Height Calculation 3-22
3.2 Active Width Calculation 3-23
5.1 Forward Discrete Cosine Transforms 53
5.2 Inverse Discrete Cosine Transforms 53
5.3 First Step in Calculation 54
54 Second Step in Calculation 5-4
5.5 Quantization and Inverse Quantization 5-6
5.6 DC Difference 5-8
5.7 DC Term Reconstruction 5-8
7.1 Horizontal Scrolling 7-23
7.2 Vertical Scrolling 7-23
7.3 Active Width Calculation 7-26
74 WO Calculation 7-26
7.5 Active Height Calculation 7-27
7.6 HO Calculation 7-27
8.1 RGB-to-YCrCb 8-4
82 YCrCb-to-RGB 8-4
83 Y-to-RGB 8-5
8.4 Color Space Conversion Bypass 8-5

xvi Contents

EN 5304804 0011L03 969 EELLC

Chapter 1
Introduction

This document describes the system interface and the architecture specifi-
cation of the L64702 JPEG Coprocessor, and contains the following
sections:

Section 1.1, Processor and System Overview
Section 1.2, Features

Section 1.3, System Description

Section 1.4, JPEG Image Compression
Section 1.5, Standards Compliance

Section 1.6, Terms and Concepts

Section 1.7, Applications

1.1
Processor and
System Overview

The L64702 is a single-chip JPEG coprocessor designed for microcom-
puter graphics and video applications including personal computers, engi-
neering workstations, true-color display cards and monitors, and color
laser printers. The L64702’s advanced software and hardware interfaces
make applications and system-level programming efficient and straight-
forward. Its performance and high integration make the L64702 a cost-
effective component while improving substantially the performance over
any system that uses general-purpose DSP devices for JPEG image com-
pression or decompression tasks.

The L64702 is designed to support several image formats dedicated to spe-
cific needs within the microcomputer environment. The high-level system
approach uses image compression to reduce storage capacity needs and
eliminate data transfer bottlenecks over the system bus. Using the JPEG
standard for file compression can achieve these benefits while preserving
excellent reproduction results.

Introduction 1-1

B 5304804 0011604 815 EELLC

The L64702 is a half-duplex device, meaning that it can support either
image compression or image decompression at one time. The L64702
complies with the latest JPEG baseline recommendation standard (JPEG
DIS 10918). Byte stuffing, byte stripping, and restart marker codes are sup-
ported. In addition, the device provides user-programmable DCT coeffi-
cients, as well as color-space and format conversion capabilities, making
the device a flexible and simple solution for image compression and
decompression tasks.

Figure 1.1 is a general block diagram of the L64702, and Figure 1.2 is a
more detailed block diagram.

Figure 1.1
L64702 General
Block Diagram
Global
Control
]] y y
y y 1
System Bus JPEG Color Video .
In¥erface - C[?ggd - »| Processing | | Space < | Memory | » Video Bus
Buffer Unit Conversion Controller Interface
L64702
1-2 Introduction

5304404 0011LOS5 751 EALLC

Figure 1.2
164702 Detailed DCcT
Block Diagram Table
Y
g
Tables i
System Video
Port & \ Port
Variable- Zi o .
gzag ____lQuantization Mcu Video
System o e P Length Conversion - Buffer Interface
Interface FiIFo [| | Encoder/
I Decoder A 7y X
) Y
DPCM/ Quantization R efoﬁ%gitting
Tables ff
IDPCM B“: o
y Y
Range Limit/ | | Range Limi¥/
Run- Level Shift Level Shift
Length [
Coding JPEG Processing \ \
Core Color Space Conversion

The main blocks in the L64702 that comprise the JPEG processing core
are:

8 x 8 FDCT/IDCT

Quantization

DPCM/IDPCM, Run Length Coding, Zigzag Conversion
Variable Length Encoder/Decoder

The JPEG processing core communicates with two independent interfaces,
the video port and the system port. The JPEG processing unit adjusts the
processing rate to the bus activity on both sides and temporarily suspends
processing when needed with no risk of data stream breakdown. This capa-
bility is extremely important for a device that operates in a CPU environ-
ment where data and tasks are changing randomly. The System and Video
Interfaces allow simple, straight-forward connection of the L64702 to the
system bus on one side and video memory on the other side.

Introduction 1-3

B 5304404 001160L 694 EELLC

14

On the video port side, the L64702 buffers image data in one of two Min-
imum Code Unit (MCU) buffers. Each MCU bulffer is 256 bytes deep and
operates in a ping-pong fashion. While one MCU buffer is transferring
data to or from the JPEG processing core, the other MCU buffer is trans-
ferring image data to or from external video memory. At the end of each
transfer, the buffers are swapped so that there is an efficient and continu-
ous image data transfer between the L64702 and external video memory.

On the video port, the chip supports colorspace conversion of three com-
ponents with nine down-loadable coefficients, which allow any user-
defined color-space conversion (RGB to YCrCb, RGB to YUV, etc.).
When the L64702 is programmed to handle four components (CYMK), it
bypasses the color-space conversion block and generates the proper
addressing scheme to convert the raster-ordered image structure in the
video memory to block-ordered data required by the 1.64702 JPEG pro-
cessing unit. A set of three registers specify the subsampling scheme for
each one of the color components.

The 164702 contains integrated DRAM/VRAM controllers with program-
mable and advanced windowing and addressing mechanisms. Within the
programmable active window, the L64702 generates the addresses for the
raster-to-block or block-to-raster conversion for a variety of image data
structures and subsampling schemes. The L64702 accesses the video
memory in master fashion using its own memory controller unit.

The L64702 contains a complete set of control signals that allow direct
interface to DRAM/VRAM. The L64702 can be programmed to periodi-
cally generate memory refresh cycles. It can also perform periodic screen
refresh or image capture functions utilizing the memory-to-shift register or
shift register-to-memory transfer cycle. The split read transfer mode is also
supported along with regular memory read and write cycles.

The system port is dedicated to compressed data or configuration data
transfers. The 164702 operates as a slave peripheral from this port.
Memory-mapped data transfers are controlled by an external CPU. DMA
data transfers are controlled by an external DMA controller. The system
interface port contains all necessary signals to perform handshaking with
an external CPU or DMA controller.

The FIFO organization is 32 words by 16 bits. The Code-FIFO buffers data
between the JPEG processing unit and the external 16-bit system bus. The

Introduction

5304804 00L1LO? 524 EELLC

buffering rate can go as high as 40 Mbyte/second. The FIFO also allows
burst transfers of compressed data.

Memory-mapped configuration tables and status registers can be accessed
by an external CPU via the SRS[1:0] pins in conjunction with an automat-
ically incrementing address pointer. An external DMA controller can
access the FIFO or the configuration tables.

The L64702 provides a bypass mode, which allows indirect CPU access of
video memory through the 1.64702 device. This feature allows for easy
testing and manipulation of image data in the video memory without any
extra hardware needed to provide an interface between the system bus and
the video bus. In addition, it allows a low-cost CPU or microcontroller,
which may have limited addressing ability, to access up to 64 Mbytes.

1.2
Features

This section summarizes the key features of the L64702:
m Implements the proposed baseline JPEG DIS 10918 standard for
image compression.

m Supports the detection of restart (RSTn), End Of Image (EOI), and
Illegal Marker (IMC) marker codes, byte stripping (during decompres-
sion), and byte stuffing (during compression).

m Supports the specification of a compressed file active window struc-
ture, allowing small window scrolling in a large compressed file.

m Contains four downloadable quantization tables.

m Contains downloadable Huffman code tables (two DC and two AC
tables).

Supports downloading of all 64 DCT or IDCT coefficients.

Provides a bypass mode that is capable of transferring original image
data to or from memory at a rate of 16.5 Mbytes/second.

m Provides a flexible color-space transformation capability with a down-
loadable, 3x3 matrix to allow any linear transformation of
three-element vectors.

m Contains a dual-port architecture consisting of a video memory bus
interface and an asynchronous system bus interface.

m Includes a multiplexed address and data bus. Supports 24-bit address-
ing capability allowing direct access up to 16M, 32-bit words.

Introduction 1-5

M 5304804 0011608 4hL0 EELLC

m Contains an on-chip video memory controller that integrates a pro-
grammable active window mechanism and raster-to-block or block-to-
raster address mechanism.

m Processes data transfer rates of up to 8.25 Mbytes/second during com-
pression or decompression with a 33-MHz external clock. Some of the
L64702 image data processing rates supported include:

— 4.125 Mpixels/second for 2:1:1 color (RGB,)
— 2.75 Mpixels/second for 1:1:1 color (RGB,)

- 8.25 Mpixels/sec for component sequential (CMYK) in any sub-
sampling scheme

m Supports three-component color (for example, RGB) as well as up to
four sequential components (for example, CMYK).

m Supports the following color image structures:
— Multiple Sources, RR.......... R, GG.......... G, BB.......... B
— Unpacked Color, RGBXxRGBx...RGBx
— Packed Color, RGBRGBRG....BRGB

— The components sequential image data structure (up to four com-
ponents)

® Supports the following image structure subsampling schemes:
— 1:0:0 is used for color to gray scale conversion
— 1:1:1 has no subsampling
'~ 2:1:1 subsamples components 2 and 3 by factor of two

—* Components sequential (four components) at any sampling
scheme allowed by the JPEG baseline specification. Both horizon-
tal and vertical subsampling schemes are supported.

® Supports a handshake mechanism for sharing the video bus with other
bus master processors.

m Provides direct support for VRAM and DRAM, including all control
and refresh signals for five operating schemes:

— read cycle
— write cycle
— CAS-before-RAS refresh cycle

1-6 Intraduction

B 5304804 0011609 377 MALLC

~ memory-to-shift register cycle (Split Read and Normal Read
Transfers supported)

— shift register-to-memory cycle (Pseudo Write and Alternate Write
Transfers supported)

m Provides control signals for flexible multiplexing of row and column
addresses and for easy implementation of video banks and interleaved
memory structures.

m Supports an asynchronous system interface, which gives the L64702
the capability to operate either as a slave /O device to an external CPU
or as a peripheral device communicating with an external DMA
controller.

Supports 16-bit system bus configurations.

Includes two external address pins with an internal auto-increment
address pointer that implements the memory mapping of all accessible
internal resources.

m Includes a programmable threshold for the FIFO, which allows burst
code data transfers between the FIFO and system memory.

m Places no restrictions on the data rate from both ports. The JPEG pipe-
line processing unit can temporarily suspend operation at any time dur-
ing the process without compromising data integrity.

Packaged in a 100-pin Plastic Quad Flat Pack (PQFP) package.

Fabricated using a 0.7 wm, CMOS process with maximum power dis-
sipation of 1.5 watts at 33 MHz.

Introduction 1-7

M 5304804 0011610 019 MELLC

13
System
Description

Figure 1.3

File Interchange in a
Microcomputer
System

Figure 1.3 shows the high-level system approach behind the L64702
device. The chip is designed to serve as either a stand-alone or COprocessor
device in each one of the microcomputer peripheral nodes, capable of com-
pressing or decompressing images in various formats.

Display Card

54702 Disk

Storage

LAN

JPEG CPU
Printer | 164702 Compressed DMA { &System
File Memory

164702

Modem

164702

Camera

Scanner

MD91.912

This section describes the operation of the L64702 in three confi gurations:
coprocessor, stand-alone, and single-bus coprocessor. Coprocessor config-
urations are used in applications that require both high-speed image com-
pression/decompression and high-speed graphics processing. Stand-alone
configurations are intended for systems in which the main system CPU
performs the graphics or image processing. Single-bus coprocessor config-
urations are useful for systems that include printers.

Coprocessor
Configuration

1-8

Figure 1.4 shows a basic coprocessor system, which includes the major
blocks of a display card design that uses the L64702 JPEG coprocessor and
an existing graphic coprocessor. This system configuration applies to high-
performance display card applications requiring both high-speed image
compression or decompression and high-speed graphics processing. The
L.64702 improves the processing time when image compression or decom-
pression is needed.

Introduction

M 5304804 0011611 TS5 EELLC

Figure 1.4
Coprocessor
System
Configuration

l ﬂCameral Display

i Off-Screen E

: Memory !

: '\ ;
B \ Video Memary Bus Y i
o A A v

: \ —] ;

) > VBR 1

Graphics URATY Copﬂgggssor :

Coprocessor VBACK - L64702 E
B Y Host Interface Bus) o
o [} 5'

! ¥ 3

; System Interface !

A ;

- Y SystemBus o
A A A A A
\
DMA Hard Disk System
/0 Controller Controller CPU Memory

+ T MD31.913

The configuration shown in Figure 1.4 is similar to the floating-point
coprocessor method used in many microprocessor systems. The system
software driver, which monitors both the graphics and JPEG coprocessors,
controls the decision to start image compression or decompression, and
uses the L64702 to accelerate the operation.

The L64702 interacts with the graphics coprocessor when the L64702
needs the video bus. Both coprocessors can operate concurrently and use
the same video bus. The L64702 asserts the VBRQ signal to request video
bus mastership. The graphics coprocessor asserts VBACK to acknowledge
the request. The 164702 maintains control of the video bus for as long as
VBRQ and VBACK are asserted.

To temporarily gain control of the video bus, the graphics coprocessor can
deassert VBACK, in which case the L64702 relinquishes the bus immedi-
ately. Worst case delay is one video bus cycle (8 CLKs). The L64702
resumes control of the video bus when the graphics coprocessor reasserts
VBACK.

Introduction 1-9

BN 530480y 0011612 393 L C

The camera and display monitor connect to the video memory serial port.
The L64702 is capable of performing both image capture and screen
refresh cycles through its video port interface.

The system interface block connects the graphics coprocessor and the
L64702 to the system bus. The L64702 system port transfers compressed
or configuration data between the 164702 and either the system memory
or the system disk. Either a CPU slave access or a DMA service can
accomplish this data transfer.

The graphics coprocessor uses the off-screen memory as scratchpad mem-
ory for windows applications, video editing, or special effects.

Stand-Alone
Configuration

1-10

The stand-alone configuration allows the video bus to be completely
devoted to the L64702. The VBACK input connects to the VBRQ output.
Therefore video bus access is granted to the L64702 upon every VBRQ
request.

Figure 1.5 shows a compression/decompression implementation with the
L64702 resident on the CPU system bus and used as a coprocessor or hard-
ware accelerator for JPEG image compression and decompression tasks.
The CPU can indirectly access the video memory through the L64702.
Indirect video memory access allows a CPU with limited addressing capa-
bility to address up to 64 Mbytes of DRAM/VRAM.

" Image manipulation using the indirect method as portrayed in Figure 1.5 is

limited in performance when compared to the graphics coprocessor con-
figuration shown in Figure 1.4. However, for low-cost applications, the
indirect method is quite acceptable.

Introduction

M 5304804 0011613 828 EMELLC

Figure 1.5
Stand-Alone System
- Video -
HCamera'[» Memary » | Display
A
- Video Memory Bus o
- i >
Y
VBRQ
| : L64702
VBACK
A
- Yy System Bus _
A A A \ AT
DMA Hard Disk System
10 Controller Controller cPU M\émory
T * MDI1914
Single-Bus Figure 1.6 shows the single-bus coprocessor configuration. This configu-
Coprocessor ration is most likely to be implemented in printer systems. The CPU must
Configuration access the print buffer memory to perform the task of print page making.

The L64702 system port and video port both connect to the system bus.

In this configuration, the system bus has three possible master devices: the
CPU, the DMA Controller, and the L64702. The CPU, by definition, is the
primary master and has the highest priority. The DMA Controller and the
164702 are secondary masters that share the bus in a round-robin arbitra-
tion scheme. The advantage of this scheme is that the L64702 system port
utilizes an external DMA Controller for compressed image data transfers
or device configurations, while the video port acts as a master port sharing
the system bus with other bus masters. During image compression or
decompression the system bus is shared between DMA transfers of com-
pressed data (performed by the external DMA Controller) and image data
transfers (performed by the L64702).

Introduction 1-11

B 5304804 001114 764 EALLC

Figure 1.6
Single-Bus I
Coprocessor _ 1
Configuration 0RQ
Bus
DACK | Arbiter
Print Printer Printer
Buffer Engine Interface
A) A
Y Y Y
System & Video Bus
A A A)
Y Y Y Y
HLDA
»| DMA CPU System Hard
Controller HOLD Memory Disk
14 When trying to implement multimedia capability in a Jow cost PC environ-
JPEG Image ment, the system designer faces two major problems: limited PC bus band-

Compression

1-12

width and storage capacity.

An analog video signal must first be digitized so the computer can process
the image data. A typical digitized image contains a huge amount of infor-
mation. For instance, a 640 x 480 pixel image at 16-bit bits per pixel reso-
lution requires almost 300 Mbytes of storage for only 15 seconds of digital
video (at 30 images per second). This size is more than the size of a typical
hard disk in a PC system.

Image compression solves this data storage problem. The Joint Photogra-
phers Expert Group (JPEG) has created an international standard for image
compression. The JPEG standard was originally invented for still image
applications, but has proved to be very useful in video applications as well.
Using the JPEG algorithm, an image can be compressed 24 to 1 and still
retain very good display quality. The image quality can be improved, how-
ever, but the higher the image quality, the greater the amount of data stor-
age and bus bandwidth required. At a 24-to-1 compression ratio a user can
store more than six minutes of realtime video on a 300 Mbyte hard disk.

The hard disk recording and playback speed may limit the multimedia
PC’s ability to record and display in realtime. In PCs, the sustained hard
disk read or write rate can vary from 150 to 500 Kbytes per second. More
expensive hardware, like SCSI disk drives, provide up to 1 Mbyte per sec-
ond. CDROMs typically have a transfer rate of 300 Kbytes per second.

Introduction

- -, 1

M 5304804 0011615 LTO EELLC

At a 500 Kbyte per second access rate the video data must be compressed
by a factor of almost 40 to 1. This very high compression ratio delivers
poor quality image reproduction, so it has become quite common to use
quarter screen (320 x 240) size images. A 320 x 240 image requires one
fourth the data of a 640 x 480 image, so only a 10 to 1 compression ratio
is needed to achieve the data transfer rate of 500 Kbytes per second
required for realtime digitization and playback from disk. At an access
time of 300 Kbytes per second, a CDROM requires a 15-to-1 compression
ratio.

LSI Logic’s L64702 JPEG Coprocessor provides programmable compres-
sion ratios with the ability to process up to 8.25 Mbytes of pixel data per
second.

JPEG also allows compatibility among the various image standards found
in desktop multimedia systems containing cameras, copiers, and scanners.
Although each produces or displays images in different ways and in con-
formance with different standards, JPEG allows for intercommunication
among all of them.

15
Standards
Compliance

The L64702 conforms to these international standards:

m CCIR Recommendation 601 (Mod F), Encoding Parameters of Digital
Television for Studios

m JPEG DIS 10918, Digital Compression and Coding of Continuous-
tone Still Images

The compliance of the L64702 with each of these standards is discussed
below.

CCIR 601 (Mod F)

The CCIR Recommendation 601 presents a proposed standard for color
space conversions. CCIR 601 specifies the conversion between R, G, B
and Y, Cr, Cb; and other aspects of color conversions. The L64702 internal
Color Converter complies with CCIR 601 (Mod F).

JPEG DIS 10918

The Joint Photographic Experts Group (JPEG) is proposing an interna-
tional standard for the compression and decompression of still photo-
graphic images. LSI Logic designed the 164702 internal DCT Processor
and JPEG Coder to comply with JPEG DIS 10918.

Introduction 1-13

B 5304804 0011bLe 537 EELLC

In the terminology of the JPEG standard, the 1.64702 supports baseline
sequential DCT-based Huffman coding for eight-bit source images. The
L64702 also supports interleaved data containing up to four components.

1.6 This section explains some important terms and concepts used in the rest
Terms and of this guide. The subsections are:
Concepts

Minimum Coded Unit (MCU)
MCU Boundaries

Display Active Image Area
Compressed Image Active Window
Color Conversion

Subsampling

Image Reconstruction
Raster-to-Block Conversion

DCT Functions

Quantization Function

Zigzag Ordering

DPCM Coding

Run-Length Coding
Variable-Length Coding (Huffman Coding)

Encoding Example

Minimum Coded The JPEG DIS 10918 standard specifies the concept of a minimum coded

Unit (MCU) unit (MCU). An MCU is a sequence of data units (8 x 8 blocks) defined by
the sampling factors of the image components. The 1.64702 supports a
wide variety of sampling factors. The sampling factor determines the size
of the MCU.

When the L64702 operates in the color mode and color space conversion
is used, three color components are supported (for example, RGB or
YCrCb). The color space conversion is completely programmable, allow-
ing any number of color conversion possibilities. Three sampling factors
are used to define the MCUs. The sampling factors are 1:0:0, 1:1:1, or

1-14 Introduction

M 5304804 001117 473 EELLC

Figure 1.7
Construction of an
MCU from Three
Color Components

2:1:1. A sampling factor of 1:0:0 indicates that an MCU is constructed
from one 8 x 8 block of the first color component only. A sampling factor
of 1:1:1 indicates that an MCU is constructed from one 8 x 8 block from
each color component.

When an image consists of the YCrCb color components, for example, and
2:1:1 sampling is implemented, each MCU contains two 8 x 8 data blocks
of the luminance (intensity) component, Y, and one 8 x 8 data block each
of the two chrominance (color) components, Cr and Cb.

With 2:1:1 sampling, the MCU is constructed from an image area of 16
pixels wide by eight lines high. Every pixel of the Y component is included
in the sample, but only every other pixel of the Cr and Cb components is
included. The resulting MCU consists of four 8 x 8 blocks—two Y blocks,
one Cr block and one Cb block.

Figure 1.7 shows how an MCU is constructed with 2:1:1 subsampling.

\ 16 pixels | Cb
I~ A
MO T T
Cblllll]l[lllll 1 Cr
rrrrrrrvreiorunmia
NEEEEEEREEEN i
Cr||||ll|l|l|ll §lines
rrr7VrvV7rrrrruriyi
Y i Y
Image Data Before Subsampling One MCU based on 2:1:1

Image Sampling

When the L64702 operates in the components sequential mode, it does not
perform color space conversion, and supports up to four color components.
The 164702 is compatible with any sampling factor specified by the base-
line JPEG standard.

Figure 1.8 illustrates how an MCU is constructed from a four-color image.
The sampling ratio is 4:2:2:1, which means that the MCU is constructed

from four 8 x 8 blocks of the C component, two blocks of the M compo-

nent, two blocks of Y and one block of K. Registers in the L64702 allow
the construction of an MCU to be completely described, in terms of how
many blocks are assembled from each color component, and the vertical

and horizontal ordering in which the assembly takes place. Each MCU

Introduction 1-15

BN 5304404 D011b1A8 30T EELLC

contains a total of 9 8 x 8 blocks (4 + 2 + 2 + 1). Each dot in the figure rep-
resents an 8 x 8 block of image data.

Figure 1.8
Construction of an
MCU from Four
Color Components

c M Y K

O

‘IzlZ
]

2

3

0 1

£
A

?Z E { +o|j = First MCU
o[ome] -

4 5 01 23 45

N Yl

(1] Z I +0 I1Z| = Second MCU

4 5

2
2 2
3 Z o +§ I +1 lzl =SixthMCU o =8x8block of image data

—» = Raster order within component

The MCU is constructed from an image area 16 pixels wide by 16 lines
high (four 8 x 8 blocks). Every pixel of the C component is included in the
sample, but only every other pixel of the M and Y components is included,
and every fourth pixel of the K component.

The components of an image are subsampled prior to image compression,
and the L64702 assumes that the components are stored in the memory in

four separate regions.

1-16 Introduction

B 5304804 0011b19 24b EELLC

The first MCU is constructed of 8 x 8 blocks taken first from the top left-
most region of the C color component (four blocks), followed by two
blocks from the same region of the M component, then from Y, and finally
from K. The second MCU is constructed following the same ordering for
data taken from the next region to the right for the four components. This
same procedure is followed for constructing all six MCUs.

MCU Boundaries

If the image size is such that the edge of the image does not fall on an MCU
boundary, the L64702 fills the remainder of the MCU with zeroes to make
sure that all compressed data consists of complete MCUs.

Display Active
Image Area

Figure 1.9
Active Image Area

In many applications, only a portion of the source image stored in video
memory is processed. This portion of the image is known as the active
image area. The active image area is defined in terms of parameters written
by the CPU to the L64702 internal registers. These parameters are: start
address, active height, active width, and display pitch.

Figure 1.9 shows the definition of these parameters relative to the complete
image. The start address defines the location in video memory where the
active image begins. The active height, active width, and display pitch are
measured in MCUs and provide the L64702 with information on the size
of the active window relative to the rest of the display area. The shaded
portion of the frame is outside of the active image area and is ignored by
the L64702. Data in the shaded region is not accessed by the L64702 dur-
ing image compression or decompression.

Frame
Start T
Address .
Active
Height
Active
image
Area

Active Width

i Display Pitch >

Introduction 1-17

B 5304304 0011620 Th8 MELLC

Compressed
Image Active
Window

Figure 1.10
Compressed Image
Active Window

A special feature of the L64702 allows an active window to be defined
within a compressed file. The compressed file represents the entire image.
However, a portion of the image can be defined as active so that when the
L64702 operates in the decompression direction, it displays only the active
portion. An active window display capability is useful if you wish to pre-
view or scroll and display only a portion of a very large image that will not
fit on the display screen. Figure 1.10 shows the active window in a com-
pressed file.

Two additional parameters, horizontal delay (MCU_HD) and vertical
delay (MCH_VD), are provided in addition to those shown in the Active
Image area of Figure 1.9. These parameters tell the L64702 how many
MCUs to skip in the compressed file before starting to decompress.

Horizontal

Delay
l ——>I (MCU_HD)

Vertical

Image Width (IW}——~

{MCU_VD)

Active
Compressed
Window

lee— Active Width {AW)

Color Conversion

1-18

The L64702 is capable of flexible color space conversion. The RGB-to-
YCrCb and YCrCb-to-RGB color conversions are defined in CCIR 601.
Any set of 3 x 3 matrix coefficients may be downloaded into the L64702,
providing an extremely flexible color space conversion system. The
L.64702 supports any linear transformation of a 3 x 1 vector by multiplying
it by the downloaded 3 x 3 matrix.

As an example, the first set of equations below shows how the L64702
operates on RGB image data to transform RGB data to YCrCb data. The
RGB-to-YCrCb color conversion is shown as a series of linear equations

Introduction

B 5304804 0011b2L S9TH EELLC

Fquation 1.1

and also as a matrix equation. The second set of equations shows how the
same procedure is used for the YCbCr-to-RGB color conversion. RGB and
Y values are in the range 16-235 inclusive; Cr and Cb values are in the
range 16-240 inclusive. The actual coefficients that are used in the matrix
range from 1.998 to -2.000.

With this flexible arrangement, the L64702 supports other conversions,
such as RGB-to-Y and Y-to-RGB. By setting up the 3 x 3 conversion
matrix as a unit matrix, the color space conversion may be altogether
bypassed.

gGB to YCrCh "v] o299 o587 0114] [A
onversion crl =| 05 -0419 -0.081|%|G
lcb| |-0.169 —0.331 05 B
Equation 1.2 B
YCrCb to RGB R 1.0 1.402 0 Y
Conversion G| = |1.0 —0.7143 —0.3437| X | Cr
Bl 1.0 oo 1772 |Cb
Subsampling When the Color Space Converter is used in the encoding direction, the

164702 can subsample. Subsampling is a process in which data is sampled
periodically, for example, every other pixel. See the subsection entitled
“Minimum Coded Unit (MCU)” on page 1-14, along with Figure 1.7 for
an explanation of 2:1:1 subsampling performed by the L64702.

The image subsampling operation reduces the number of pixels of one
color component relative to another. The subsampling process is a way of
accomplishing up-front video image compression besides the regular com-
pression scheme involving quantization. The basic principle underlying
subsampling is that there is some redundancy in color components. This
redundancy can be eliminated by subsampling in such a way that the image
quality is not impacted. The best known subsampling scheme is the 4:2:2
YCrCb format. This scheme samples the Y component in the color subcar-
rier four times for every two times that the Cr and Cb components are each
sampled. Twice as many Y pixels are produced as either Cr or Cb pixels.

In a JPEG system, the Y, Cr, and Cb components that result from subsam-
pling are interleaved and transferred as 8 x 8 blocks. The 4:2:2 format is
translated to 2:1:1 JPEG subsampling, which means that there are two

8 x 8 blocks of Y followed by one 8 x 8 block of Cr and one 8 x 8 block of

Introduction 1-19

B 5304804 00llb22 630 MELLC

Cb. These four blocks are also called an MCU. To construct this particular
MCU, an area of 16 pixels by 8 lines is needed.

Refer to Section 7.4, “Image Subsampling,” for more information.

Image
Reconstruction

Figure 1.11
Image
Reconstruction
from YCrCb to
RGB

When the Color Space Converter is used in the decoding direction to
decode 2:1:1 coded images, the chrominance components (Cr and Cb) are
replicated. Each block of 8 x 8 pixels for a given chrominance component
is expanded into a 16 x 8 block. The additional 64 values, which were ear-
lier eliminated by downsampling during encoding, are interpolated based
on the current chrominance values. In fact, the additional 64 values are
duplicates of the current chrominance values. Since none of the luminance
pixels (Y) were eliminated by downsampling, there is no need to interpo-
late missing pixels for that part of the image. Figure 1.11 illustrates the pro-
cess of image reconstruction.

8
8 No 8 8
Y v Duplication v y
] 1 -t 0 1 |8
8 8 [
8| R R | 8
0 ! 3x3 Duplication
8 Conversion| jee— o cr, |8
Gy| Gy fee Matrix Crg Cry 0
8| Bo| Bl 8
Duplication N
nil) Chy [Cbo
Restoration of
Original Image Interpolated Image Downsampled Image

Raster-to-Block
Conversion

1-20

The L64702 converts the full-image raster data into data blocks of eight
pixels by eight pixels, the format used by the DCT Processor and the JPEG
Coder.

In the encoding direction, the L64702 reads the first eight pixels of the
video memory in the horizontal direction, then reads the next eight pixels
of the next display line, and so on, until an image area eight pixels by eight
pixels is read. The eight pixels of each line are read in raster order; that is,
from left to right. The resulting array is an 8 x 8 block, thus fulfilling the
raster-to-block conversion requirement. The next raster-to-block conver-
sion starts back on the first display line, on the ninth pixel from the

introduction

B 5304804 0011k23 777 BALLC

beginning. Thus the L64702 reads through the video memory and prepares
a sequence of 8 x 8 blocks in the order described. Figure 1.12 illustrates
raster-to-block conversion.

In the decoding direction, the L64702 reads 8 x 8 blocks and performs a
block-to-raster conversion. The block-to-raster conversion takes pixels
from each 8 x 8 block and writes an 8 x 8 area in video memory (eight pix-
els wide by eight lines high).

Figure 1.12
Raster-to-Block o > >
Conversion > — I‘ - 4 —
4 »|] 4= . 4 . >
2 1IBlock 0 = ~1lBlock 1} e [< [T = o e
:fBlocan e e s nmnn
DCT Functions The DCT Processor performs the forward (FDCT) and inverse discrete
cosine transforms (IDCT). The purpose of FDCT and IDCT is to transform
image data between the time domain and the frequency domain.
In video compression, the FDCT function is implemented first, followed
by quantization. In video decompression, inverse quantization occurs first,
followed by the IDCT function. IDCT performance meets the CCITT
requirements. The DCT/IDCT coefficients may be downloaded into the
L64702. The equations for these transforms are shown below. The symbols
used in the equations are defined following the equations.
Equation 1.3 7
1 (2x+1)un (2y+1)vn
Forward DCT Fou=7Cu G, Y Xt 5 c0s —— (FDCT)
x=0y=0
Equation 1.4 7 1
1 (2x+1Dun (2y+1)v?t
Inverse DCT fy’x =13 2 2 C,C,F, , cos T cos T (IDcT)

Introduction 1-21

M 5304804 001L&2Y4 LO3 MRLLC

where:

u = horizontal frequency index
v = vertical frequency index

x = horizontal position index

y = vertical position index

C,.C, = L for u,v =0 C,C, =1 otherwise

J2

The L64702 calculates the DCT or IDCT coefficients in two separate
matrix operations as follows:

[Y] = [A]e[x]
[vy] = [a]e[Y]]
where:

[A] isthe 8 x 8 DCT or IDCT matrix.
[X] isthe 8 x 8 input data matrix to the FDCT/IDCT L64702 block.

[Y] is the result of the first operation.
[Y] is the final result.

Quantization
Function

Equation 1.5
Forward
Quantization

Equation 1.6
Inverse Quantization

1-22

Quantization categorizes data into discrete values. Quantization is a lossy
process, meaning that information is lost in the quantization process.

The forward and inverse quantization functions performed by the JPEG
Coder are shown below. The data used in the quantization is stored within
the 164702 in four quantization tables. The symbols used are defined fol-
lowing the equations.

Qx(i),) = round(%((%)
x () = Q, - qU)

where:

x(@d) = DCT coefficient created by the DCT Processor.

Introduction

B 5304804 00llk25 54T EELLC

x'(1) = reconstructed DCT coefficient created by the quantizer in the
L64702. Since quantization is a lossy process, x’(i) is not nec-
essarily equal to x(i).

Q(x(i), 1) = quantized DCT coefficient. Q(x(i), i) is the output of the
quantizer and the input to the coding modules when the
L.64702 is in DCT encoding configuration. Q(x(i), i) is the
output of the decoding modules and the input to the inverse
quantizer when the L64702 is in DCT decoding
configuration.

q@) = quantization stepsize from the quantization table for the com-
ponent being quantized.

round(x) = rounding function. round(x) rounds to the nearest integer.
When x is halfway between two integers, round(x) rounds up
for positive and down for negative values of x.

i= index of the DCT or reconstructed DCT coefficient. i is in the
range from O to 63 inclusive.

Figure 1.13 shows the forward and inverse quantization functions. Empty
circles indicate that the endpoint of the line segment is not included.

Figure. . 7-? Quantized Data Reconstructed Data
Quantization 3 |-ememme- *—0 K ®
Functions i 5
2 |- *—0 ! 2q [---eeeeee o
1 -e—0 | | g f----@
350 250 -150_-4%g oo FIE T N G N B
i ': g 0Bq 159 25q 35q : ; ; 1 2 3
E ! : Source Data ; ! l Quantized Data
J : o—=- 1 ' ', ®----1-1g
. E O—@-------- -2 ; [-2q
O—e-- -3 - -3q
Forward Quantization Function Inverse Quantization Function

Table 1.1 shows examples of a forward and inverse quantization of several
input values. The table assumes that source data is first quantized, then
reconstructed using the same quantization stepsize g. Note that in general,
the reconstructed value differs from the source value.

Introduction 1-23

B 5304804

Table 1.1
Quantization
Examples

Figure 1.14
Quantization
Example

1-24

00Llkeb 48L EELLC

Source Quantized Reconstructed
Data Data Data
1.2q 1 1q
-0.4q 0 0
3.0q 3 3q

Figure 1.14 shows an example of forward quantization on an input signal
with three non-zero values. The input function and the quantization func-
tion are shown on the upper graph, and the resulting quantized function is
shown on the lower graph.

DCT values

L4
H . 1
0 31 63
Quantized
DCT values
A
¢)
; N
0 63
Introduction

B 5304804 0011be? 31lc MALLC

Zigzag Ordering

Figure 1.15
Zigzag Ordering

The DCT processor encodes DCT coefficients and outputs the data in
either raster order or, more commonly, zigzag order. Zigzag ordering
orders the coefficients in increasing order of frequencies, which creates
longer runs of zero values and increases coding efficiency in the JPEG
Coder.

Figure 1.15 shows zigzag ordering. The figure shows the rearrangement of
the block from raster order. Coefficient O is the DC coefficient and coeffi-
cients 1 through 63 are AC coefficients, with the lower frequencies having
the lower-numbered coefficients.

01156 ;14|15(27]28

2| 4|7 |13|16)2]29]}42

31 B 1211712530 41|43

9 | 11118243140 44|53

101923 32|39;45} 52| 54

20| 22|33 |38)46 |51 |55]60

2113413747505 |56

35| 36|48 |43 |57 | 58) 62| 63

Figure 1.16 shows an example of the benefits of zigzag ordering. The data
block shows a typical distribution of DCT coefficients. The graphs below
the data block show the runs for raster and zigzag ordering. Notice that zig-
zag ordering concentrates the non-zero coefficients and in general pro-
duces longer zero-length runs.

Introduction 1-25

M 5304804 0011bL28 259 EMLLC

Figure 1.16
Raster and Zigzag
Encoding Example

0[500§j100}100|100) O | O} O] O

8| 100(100|100|100| 0 | O[O0 O

16| 100 [100(100|100 0 | O | O | O

241100 10011004100 0 | O [O | O

DCT Value

500
400
300
200
100

0t 23 456 7 8 91011 121314151617 18 19 20 21 22 23 24 25 26 27 28 29

Raster Order

DCT Value

500
400
300
200
100 e 00000 00 e 00 o0 [

8- 2—0—0- —0—0—0—0——-0—0—0—0—0—>»
0 1 2 3 45 6 7 8 91011 1213141516 17 18 13 20 21 22 23 24 25 26 27 28 29

Zigzag Order

1-26 Introduction

M 5304804 0011629 195 MELLC

DPCM Coding Each DC coefficient is coded using the DC coefficient value for the previ-
ous block of the same component as a predictor. This coding scheme is
called differential pulse-code modulation (DPCM). The difference
between the current DC coefficient and the previous value is coded. The
previous value of the DC coefficient is stored in one of four internal DC
predictor registers (one for each component). When the L64702 is reset,
the internal DC predictor values are set to zero. The DPCM coding in the
L.64702 conforms to the proposed JPEG DIS 10918 standard for encoding
DC coefficients in sequential DCT-based processes.

The equation for the DPCM is shown below. A(n) is the predictor that is
coded at the start point of the coding operation DC_; = 0 so A(0) = DC,,.

Equation 1.7

DPCM Coding a(n) = DC,—DC,_4
Run-Length The AC coefficients are first coded by a run-length coding algorithm. In
Coding run-length coding, each AC coefficient is coded as an event consisting of

a run of zero coefficients and a non-zero value. (DC coefficients always
have a zero run length, since the DC coefficient is the first coefficient in the
block.) The run-length coding in the JPEG Coder conforms to the proposed
JPEG standard! for encoding AC coefficients in sequential DCT-based
processes.

Variable-Length The code preprocessor and code tables generate variable-length code-

Coding (Huffman words or Huffman codes. The codewords are chosen to maximize compres-

Coding) sion for the image data type to be processed. The most commonly
occurring events are assigned the shortest codewords. See the proposed
JPEG standard for more information about creating code tables.

1. The International Standard Draft is expected to be approved as an international stan-
dard shortly.

Introduction 1-27

B 5304804 0011630 907 MELLC

Encoding The following example shows the JPEG Coder’s operation in DCT-based
Example encoder configuration. Figure 1.17 and the explanations following the fig-
ure show how a portion of an input data stream is encoded.

Figure 1.17 023681 1 0 3 0 0 -160 7 0 1 0 53
Encoding Example
l l 1. Quantization l
2% 128 0 0 1 0 0 -4 0 2 0 0 0 13

2. Run-length coding

313
3. Size lookup

3/4

. 5. Extension bit
4. Huffman coding generation
Mo 1
Complete
codeword

Quantization

Quantization reduces the number of data values and increases the number
of zeros. In this example, all values in the quantization table are assumed
to be four. The quantized values are determined by the forward quantiza-
tion function described earlier in the subsection entitled “Quantization
Function.” For example, the DCT coefficient 53 in the input stream is
quantized as shown below:

Equation 1.8 N 53
DCT Coefficient Q(X(I), l) = round(T) = round(13.25) = 13

Calculation
Run-Length Coding

The run-length coder determines the number of zeros between successive
non-zero coefficients. In the indicated portion of the data stream, three
zeros precede the non-zero coefficient 13.

1-28 Intraduction

BN 5304804 0011631 843 EELLC

Table 1.2
AC Coefficient Size
Table

Table 1.3
Sample AC Code
Table

. Size Lookup

The code preprocessor looks up the size corresponding to the coefficient in
the size table shown in Table 1.2. In the example, the coefficient 13 corre-
sponds to the size 4.

Size AC Coefficient

-1,1

-3,-2,2,3

-7..-44..7
-15..-8,8..15
-31...-16,16..31
-63...-32,32...63
-127...-64,64...127
-255...-128,128...255
-511...-256,256...511
-1023..-512,512...1023

O 00 -1 N R W N

—_
(=

Huffman Coding

The variable-length coder uses the run and size values to look up the Huff-
man code in the code table. The code tables are set up by the user as
described in Chapter 3, “Internal Registers and Data Tables.” Table 1.3
shows a portion of the code table used in this example. The entry used in
the example is shown in bold.

Run/Size Huffman Code

32 11111000

3/3 1111111000

3/4 111111110111

3/5 1111111110010001
3/6 1111111110010010

Extension Bit Generation

The code preprocessor determines the extension bits using the algorithm
given in the following paragraphs and shown in Figure 1.18.

Introduction 1-29

B 5304804 0011k32 74T EELLC

C is the coefficient in two’s complement notation, and S is the size. If C is
greater than zero, the extension bits are the S low-order bits of C. If C is
less than zero, the extension bits are the S low-order bits of (C - 1).

In this example, C is equal to 13 (binary code 000.0000.1101,) and S is
equal to four. The extension bits are the four low-order bits 11015.

Figure 1.18 shows the general structure of the codewords generated by the
L64702.

Figure 1.18
Codeword Structure Huffman Code Extension
e 11016 bits ———p|— 1t0 10 bits —»»
2 to 26 bit
codeword
1.7 This section lists the typical applications for the L64702:

Applications

1-30

® Multimedia

B Image transmission systems, modems, color faxes, and LANs
m Image storage and retrieval systems

m Display cards

m Color and gray-scale printers, copiers, and scanners

m Color publishing and pre-press systems

m Digital cameras

Introduction

B 5304804 0011633 blb EELLC

Chapter 2
Interface Description

This chapter provides detailed information on the L64702 signal descrip-
tions. These descriptions are useful for hardware designers who are inter-
facing the L64702 with other devices.

This chapter contains the following sections:

Section 2.1, System Interface Signals
Section 2.2, Clock/Reset Interface Signals
Section 2.3, Video Memory Interface Signals

Section 2.4, Video Bus Arbitration Signals
Figure 2.1 shows the logic symbol for the L64702.

Figure 2.1

, 2
L64702 Logic Symbol SRS[I0] — 2\ <——>» VADB[31:0]
SDBI15:0] <o\ > VRS
. ———» VCAS
SCS —» ———> VDEN
— ——» VTR/OE
SWR ——»
System o —2\—-> VWE[1:0] Video
Interf SRD ———» ———» VDSF Memory
nterface kg 164702 Interface
SINT —] ¢—— VTRR
f«—— VIRS
SORQ ~——— = VRFC
SDACK » ——» VTRC
Je——— VWAIT Arbitration
Clock/Reset LK — s Control
Interface —> VBR interface
RESET ————3 l———— VBACK

Interface Description 2-1

B 5304804 O0L1b34 552 EALLC

2.1
System Interface
Signals

2-2

The system interface signals allow communication between the L64702
and a system processor. To the system processor, the L64702 appears as a
memory-mapped device containing a block of memory resources and con-
trel and status registers. The L64702 occupies only four address locations
in the system processor memory space——the internal registers and tables
are made accessible through an internal address pointer technique. Each
signal in the system interface is described below.

SCs

SDACK

SDB[15:0]

SDRQ

System Chip Select Input

An external CPU asserts SCS LOW to access L64702 internal mem-
ory resources. The L64702 selects the specific resource to be
accessed by means of the SRS[1:0] signals. A CPU must never assert
SCS at the same time that SDACK is asserted.

System DMA Acknowledge Input

The external DMA controller asserts SDACK LOW to notify the
L64702 that the L64702’s request for DMA service has been
acknowledged, and that a DMA read or write operation will be per-
formed. The L.64702 asserts SDRQ to request the DMA operation.
SDACK acts as a chip select signal during DMA transfers, in a simi-
lar manner to the operation of SCS during CPU transfers.

SDACK and SCS must never be active at the same time.

System Data Bus Bidirectional
SDB{15:0] transfer data between a selected register or memory loca-
tion in the L64702 and external memory. SDBO is the LSB and
SDB15 is the MSB. SDB{15:0] acts as an input data bus during a
write cycle, and as an output data bus during a read cycle. The
L64702 3-states the signals of SDB[0:15] if there is no access to the
device (SCS and SDACK signals are not active).

System DMA Request Output

The L64702 asserts SDRQ HIGH to request DMA service from an
external DMA Controller. The L64702 can only assert SDREQ pro-
vided the DMA Enable (DE) bit in the SMR Register is set.

The START bit in the SMR Register affects DMA operation. The sta-
tus of SDRQ depends on whether the L64702 is in an initialization
state or in a processing state.

During initialization, the INIT bit in the SMR Register must be set to
one. The 164702 asserts SDRQ immediately after the DE bit is set
regardless of the START bit, and remains active until DE is reset.

Intgrface Description

B 5304804 0011635 499 EELLC

SINT

SRS[1:0]

Interface Description

This configuration, by definition, allows access only to registers and
tables from Group 2. Refer to Chapter 3, “Internal Registers and Data
Tables,” for more information on Group 2 registers and tables.

The L64702 is in the processing state and performs image compres-
sion and decompression when DE and START are both set to one and
INIT is reset to zero. In this case, DMA operation services the FIFO
only. SDRQ becomes active or inactive depending on the state of the
FIFO, which is dependent on its programmed threshold or burst level,
its full or empty condition, and detection of markers in the code
stream. DMA becomes active or inactive for image compression or
decompression based on events that affect the FIFO, as shown in the
table below. Refer to Section 3.5, “Group 3 FIFO,” for more
information.

Image Compression Image Decompression

DMA Active DMA Inactive |DMA Activer DMA Inactive

The number of [The burst trans- [The number of [The burst transfer of
words in the [fer of words out [words in the [words into the FIFO
FIFO is greater pf the FIFO has [FIFO is less has finished or an
than or equal to [finished. than the burst RI, EOIL or IMC
khe burst thresh- threshold. marker has been
pold. detected.

System Interrupt Request Output

The L64702 asserts SINT LOW when an internal, unmasked inter-
rupt flag is set. SINT remains asserted as long as the internal interrupt
condition persists and the interrupt flag is not masked.

System Read Internal Strobe Input

An external CPU or DMA controller asserts SRD LOW to initiate a
read operation. SCS must be active for CPU read operations and
SDACK must be active for DMA read operations. When SRD
becomes active, the 1.64702 transfers the contents of the selected
internal memory or register resource to the system data bus,
SDB[15:0]. The L64702 automatically increments the Address
Pointer Register by one on the LOW-to-HIGH transition of SRD
when a CPU reads from Group 2 (SRS[1:0] = 10,).

System Register Select Input
SRS[1:0] determine which of the four 1L64702 internal memory
resources is selected during a CPU transfer. When the L64702 is in
DMA transfer mode, the L64702 ignores these signals. The table
below shows the meaning of SRS[1:0].

2-3

BN 5304804 0011636 325 EALLC

SRS1 SRS0 Register

0 0 Group 0: Address Pointer Register
0 1 Group 1: Status Register/Mode Register
1 0 Group 2: Tables and Control Registers
1 1 Group 3: FIFO
SWR System Write Strobe Input

An external CPU asserts SWR LOW to initiate a write operation.
SCS must be active for CPU write operations or SDACK must be
active for DMA write operations. On the LOW-to-HIGH transition of
SWR, the CPU writes the contents of the system data bus,
SDBJ[15:0], to the selected internal memory or register resources.
When writing to Group 2 (SRS[1:0] = 10,), the L64702 automatically
increments the Address Pointer Register by one on the LOW-to-

HIGH transition of SWR,
22 These signals are the clock and reset signals for the L64702.
Clock/Reset
CLK System Clock Input

Interface Signals X ,)) .
CLK is the input clock signal that controls all operations within the

L64702. All internal operations occur on the LOW-to-HIGH transi-
tion of CLK.

RESET Reset Control Input
An external CPU must assert RESET HIGH for a minimum of two
clock cycles to reset the L64702. During a reset operation, the
L64702 terminates all internal processing and enters the idle state.
The L64702 synchronizes RESET internally with the LOW-to-HIGH
transition of CLK.

After areset operation, all internal control and status registers return
to their default values, but data in the internal tables and most control
registers are not affected. |

23 The 164702 uses the video bus interface signals to communicate with

Video Memory external video memory (DRAMs and VRAMS) and external /O devices.

Interface Signals The L64702 is a master device on the video port—it controls the timing,
the address, and the data flow. The Video Memory Interface is designed to
share the bus with other bus masters by means of special purpose arbitra-
tion signals. Each signal in the video memory interface is described as
follows.

24 Interface Description

Bl 5304804 0011637 2b1 EEALLC

VADBI[31:0]Video Address and Data Bus Bidirectional

VCAS

VDEN

VDSF

VADB[31:0] form a bidirectional multiplexed address and data bus.
At the beginning of a video memory cycle, 24 bits of address on
VADB[25:2] and status bits on VADB[29:26] are valid with the fall-
ing edge of the VRAS signal and stay valid until the falling edge of
VDEN signal. On the falling edge of VDEN signal, the 1.64702 either
drives the entire 32-bits with valid data during a video memory write
cycle or accepts valid data from the video memory during a read
cycle. The L64702 drives the VADB[31:0] signals when the L64702
has control over the video bus, and VBRQ and VBACK have been
asserted. The L64702 3-states VADB[31:0] when the L64702 has no
control over the video bus, indicated by the state of VBACK.

Video Memory Column Address Strobe 3-State Output
The L64702 asserts VCAS LOW to latch the column address into

VRAM/DRAM devices. VCAS can be connected to the CAS input of
these devices. The VCAS HIGH-to-LOW transition occurs one CLK

-cycle after VADB[31:0] switches from address to data. The column

address should be latched into a temporary buffer (74LS$373) prior to
this transition.

The L64702 drives VCAS when it has control over the video bus.
Otherwise, the 1.64702 3-states VCAS.

Video Bus Data Enable 3-State Output
The L64702 asserts VDEN LOW whenever the L64702 has placed
valid data on VADB[31:0]. VDEN can drive the active-LOW
output-enable signal of a bidirectional bus transceiver such as the
74ALS245. These transceivers are used as buffers between the
164702 video data bus VADB([31:0] and large memory arrays.

The 164702 drives VDEN when it has control over the video bus.
Otherwise, it is 3-stated.

Video Special Function 3-State Output
The VDSF signal from the L64702 allows utilization of special fea-
tures of external VRAM devices. The level of the VDSF output
(HIGH or LOW) at the falling edge of VRAS determines which of the
VRAM special features are used during the current memory cycle.
Refer to any VRAM data book for a full explanation of the special
features available.

The L64702 drives VDSF when it has control over the video bus.
Otherwise, it is 3-stated.

Interface Description 25

B 5304404 0011638 178 EMLLC

2-6

VRAS

VRFC

VTR/OE

VTRC

Video Memory Row Address Strobe 3-State Output
The L64702 asserts VRAS LOW when the address lines on VADB
are valid. VRAS can be connected to the RAS input pin of VRAM/
DRAM devices. VRAS is intended for latching row address and other
control information into these devices during the HIGH-to-LOW
transition. Because address and data are multiplexed on the VADB
bus, VRAS can latch the column address and status in 7418373
devices in order to maintain address and status validity through the
entire memory cycle.

The L64702 drives VRAS when it has control over the video bus.
Otherwise, the L64702 3-states VRAS.

Video Refresh Cycle Output

When HIGH, VRFC indicates that a video memory CAS-before-RAS
refresh cycle is in progress. VRFC may be used as an indicator that
such a refresh cycle is in progress—it stays LOW at all other times.
VRFC in conjunction with VTRC indicate activity on the video mem-
ory bus.

Video Data Transfer and Output Enable 3-State Output
The L64702 asserts VIR/OE LOW to enable the output drivers of the
video memory devices. VIR/OE is connected to the TR/OE inputs of
the VRAMs and DRAMs in video memory. In SRAM devices it is
connected to the OE input of these memory devices.

During a read cycle, VIR/OE is HIGH when VRAS falls. The
L64702 later asserts VTR/OE LOW to enable data from the video
memory to be placed on VADB[31:0]. Data is latched into the
1.64702 on the LOW-to-HIGH transition of VTR/OE. VTR/OE can
also be used as the active-LOW read signal for SRAMs and other
peripheral devices connected to the L64702 on the video memory
interface.

VTR/OE is used for the Normal Read Transfer and Split Read Trans-
fer operations. In these cases, VIR/OE is asserted LOW before and
after the falling edge of VRAS.

VTR/OE is driven when the 1.64702 has control over the video data
bus and is 3-stated otherwise.

Yideo Transfer Cycle OQutput
When HIGH, VTRC indicates that a video memory Read Transfer
cycle or a video memory Write Transfer cycle is in progress. The
VTRC signal is a video controller status flag. The L64702 drives

Interface Description

E® 5304804 0011bL39 034y BALLC

VTRR

VTRS

VWE[1:0]

VTRC regardless of whether the 1.64702 is controlling the video bus
or not.

Video Transfer Request Input

An external video timing generator asserts VIRR LOW to initiate a
video line transfer cycle. Depending on the C_D bit in the SCR Reg-
ister, the VTRR signal initiates either a video memory Read Transfer
or Write Transfer cycle. These cycles involve transfers of complete
rows of data between the DRAM core and serial shift register of a
video memory device. The L64702 supports internally the addressing
scheme for video memory Read and Write Transfer cycles by means
of two internal addressing registers, Transfer Start Address (TSA)
and Transfer Increment (TT). For more details on these registers, refer
to Chapter 3, “Internal Registers and Data Tables.”

If the L64702 is in the Image Capture mode (C_D = 1), the HIGH to
LOW transition of VTRR indicates that a new line is ready to be
transferred from the video shift register to the memory. If the 1.64702
is in the Image Display mode (C_D =0), the HIGH to LOW transition
of VTRR indicates that the video shift register is ready to accept new
line from the video memory.

Video Transfer Reset Input

An external device asserts VIRS LOW to initialize the Transfer Start
Address pointer to the initial address. In terms of video timing sig-
nals, VIRS indicates the start of a new frame or new field. In most
cases, VIRS is connected to the external VSYNC signal.

Video Memory Write Enable 3-State Output
The L64702 asserts VWE[1:0] LOW during video memory write
operations. The VWE([1:0] signals are connected to the WE inputs of
DRAM/VRAM or SRAM devices. A HIGH-to-LOW transition on
VWE indicates the beginning of a memory write cycle.

In DRAM/VRAM devices, the HIGH-to-LOW transition of VCAS
while VWE[1:0] are LOW latches the data into the device.

In SRAM devices, the LOW-to-HIGH transition of VWE[1:0] latches
the data into the device.

VWEQ is the control signal for the lower 24 data bits (VADB[23:0]),
while VWET controls the most-significant eight bits (VADB[31:24]).
When the L64702 is programmed to operate in the RGBX image data
format, VWETI is not active and remains HIGH. In all other image
modes, the two pins are identical.

The L64702 drives VWE[1:0] when it has control over the video bus.
Otherwise, it is 3-stated.

Interface Description 2-7

M 5304804 00LLbY4D &5k EELLC

24 The L64702 uses three signals, VBRQ, VBACK, and VWAIT to generate
Video Bus a handshake mechanism for sharing the video memory bus between an
Arbitration external master processor and the L64702. These signals are described
Signals below.

VBACK Video Bus Acknowledge Input

The external video bus master asserts VBACK LOW to grant the
L64702 control of the video memory bus. The other video bus master
can preempt the bus (force control away from the L64702) by deas-
serting VBACK during an L64702 video bus operation. In this case,
the 1.64702 acknowledges the preemption as described under VBRQ.
VBACK is synchronous to the L64702 clock.

VBRQ Video Bus Request QOutput
The 164702 asserts VBRQ LOW to request control of the video
memory bus from an external video bus master. The other master
device asserts VBACK to grant control of the video bus to the
L64702. Upon receiving VBACK, the 164702 starts with the video
memory transfer. VBRQ remains asserted while the 164702 either
has data to transfer or can accept data to or from the on-chip MCU
buffers. The L64702 can alternately assert and deassert VBRQ as a
function of the full or empty status of the MCU buffer during com-
pression or decompression.

When VBRQ is deasserted HIGH, VBACK must be deasserted
(HIGH) before VBRQ is reasserted, indicating that the video bus
release has been granted by the other master. The other video bus
master can preempt the 1.64702 from the video bus by deasserting
VBACK. When this happens, the L64702 completes the current
cycle, deasserts VBRQ for eight CLK cycles, and asserts VBRQ
again if it still requires access to the video bus.

VBRQ is asserted for memory refresh, video memory transfer cycles,
and normal read or write cycles. If the TRTH bit in the SMR Register
is set, the 164702 asserts VBRQ until TRTH is reset.

VYWAIT Video Bus Wait Input
VWALIT asserted indicates that the external video memory is not yet
ready to complete the memory cycle. VWAIT also affects the video
transfer and refresh cycles. VWAIT is synchronous to the L64702
clock.

2-8 Interface Description

EN 5304404 O0llbul 792 EELLC

Chapter 3

Internal Registers and Data
Tables

This chapter discusses the L64702 internal registers and data tables. It also
provides a description of the internal memory mapping and the access to
these registers and tables from the system interface. This chapter is
intended primarily for system programmers who are developing software
drivers.

This chapter contains five sections:

Section 3.1, L64702 Register Overview

Section 3.2, Group 0 Address Pointer Register (APR)
Section 3.3, Group 1 Registers

Section 3.4, Group 2 Registers and Tables

Section 3.5, Group 3 FIFO

31
L64702 Register
Overview

The L64702 registers and memory resources are divided into four groups:
Group 0, Group 1, Group 2, and Group 3. Group 0 contains the APR Reg-
ister, which addresses the registers and tables in Group 2. Group 0 1s also
used for transfer-through operations, which allow a CPU direct access to
video memory. Group 1 contains the status and mode registers. Group 2
contains registers and tables that configure the compression and decom-
pression operation of the 1L.64702. Group 3 contains the FIFO.

Most registers and table entries are 16 bits wide—some registers are 24
bits or 32 bits wide. All accesses are done in 16-bit widths. Initialize the
APR Register before accessing the control registers or tables in Group 2.

Internally, the L64702 has a 16-bit architecture. During data transfers from
the CPU port, the CPU should perform memory accesses on 16-bit bound-
aries. All registers and tables are memory-mapped to the system with

16-bit resolution. When performing 16-bit transfers, the CPU requires only
one memory cycle per register access. During write operations, the L64702

Internal Registers and Data Tables 3-1

B 5304804 00Llbu2 629 EELLC

disregards bits that it does not use. During read operations, the L64702 sets
any unused bits to zero.

The L64702 contains some registers that are longer than 16 bits. These reg-
isters are divided into two 16-bit sections: the least-significant word
(LSW) and the most-significant word (MSW). Each 32-bit section is
assigned a specific address, and therefore requires two 16-bit memory
cycles during programming.

The L64702 uses an auto-increment address pointer to simplify the initial-
ization procedure and to reduce the number of memory locations occupied
by the L64702 in CPU memory. The address pointer is active only when
accessing Group 2 data tables and control registers (SRS[1:0] = 10,). After
each complete access to this group, the L64702 automatically increments
the address pointer by one on the rising edge of either SRD or SWR. After
the address pointer increments, it points to the next table or register entry.
During 1.64702 initialization (INIT = 1), the external system (CPU or
DMA controller) can access only Groups 0, 1, and 2. If INIT is set HIGH,
the 164702 is in the initialization phase, the START bit is ignored, and no
compression or decompression processing can take place. When INIT =0,
the FIFO becomes accessible to the external system, and the Group 2
resources of the L64702 become inaccessible to the external system.

Table 3.1 shows how the START and INIT bits are used in accessing the

Group 0, 1, 2, and 3 resources of the L64702. Be aware that merely setting
the bits to the indicated states does not perform the corresponding opera-
tion, but is required as a precondition to performing the operation.

Table 3.1
Accessing the L64702
Internal Groups
CPU DMA
Access Access
START DE INIT TRTH Groups Groups Note
0 0 0 1 0,1,3 - CPU Transfer-Through Mode, Group 2 Protected
0 0 1 0,1,3 3 DMA Transfer-Through Mode
1 0 0 0 0,1,3 - Processing Operation in CPU Transfer Mode
1 1 0 0 0,1,3 3 Processing Operation in DMA Transfer Mode
x! 0 1 0 0,1,2 - Initialize mode, CPU Transfer Mode
X 1 1 0 0,1,2 2 Initialize Mode, DMA Transfer Mode

1. x =don’t care

32 Internal Registers and Data Tables

B 5304804 0011b43 565 EELLC

After the START bit has been set, any attempt to write to Group 2 (registers
and tables) terminates L64702 processing. You must reset the device to
restart operation. You can read Group 2 registers and tables during opera-
tion with no risk of data corruption only if you stop operation and go tem-
porarily into the initialization mode.

3.2 The Address Pointer Register (APR), shown in Figure 3.1, is an 11-bit reg-

Group 0 Address ister, which points to the internal registers and tables from Group 2. It is

Pointer Register accessed when SRS[1:0] = 00,. Before accessing a register or table loca-

(APR) tion from Group 2, you must pre-initialize the APR with the address of the
first desired register or table entry according to the internal memory map-
ping (see Section 3.4, “Group 2 Registers and Tables”). The APR automat-
ically increments by one on the LOW-to-HIGH transition of SRD or SWR
when accessing the Group 2 registers (SRS[1:0] = 10,).

Figure 3.1 15 1m0 0
Address Pointer 0 Address Pointer

Register

33 Group 1 contains two registers: the System Mode Register (SMR) and the

Group 1 Registers System Status Register (STS). A CPU may access these registers by setting
SRS[1:0] =01,. An external system can access these registers without any
restrictions during processing without interrupting the L64702 internal
processing unit. The following two subsections describe the two registers.

System Mode The SMR Register is a write-only register that allows external system con-

Register (SMR) trol of the L64702. The SMR Register contains bits that start or stop the
device operation, reset the device, enable or disable DMA service, set the
FIFO burst level, and enable interrupts.

Figure 3.2 shows the bit organization of the SMR Register. Descriptions of
the fields follow the figure. The L64702 clears all bits in the SMR Register
to zero after a frame, software, or hardware reset.

Figure 3.2
System Mode
Register

| ~«— Interrupt Enable ——»
15 14 13 12 1 10 9 5 4 3 2 1 0

IMC_IE |EO!_IE |RI_IE [LCIF_IE [EOA_IE |THR_IE BURST TRTH | INIT | START | DE { FRESET

Internal Registers and Data Tables 3-3

B 5304804 001LlbL4y 4T3 MLLC

FRESET Frame Reset 0

DE

START

When the CPU sets the FRESET bit to one, the L64702 partially
resets itself and generates a FRAME RESET pulse. The CPU does
not need to set the bit back to a zero to complete the frame reset. The
L64702 issues a single FRAME RESET pulse each time the CPU
writes a one to this bit. When the FRESET bit is set, the 1.64702 resets
the JPEG processing unit and video addressing state machine to their
initial states. Video memory refresh cycles and the video transfer
mode of operation set up by the configuration of the VTRR, VTRS,
and C_D bits are not affected by setting the FRESET bit. A frame
reset does not affect the contents of Group 2 tables and registers.

FRESET Definition

0 No Frame Reset
1 The L.64702 Issues a Frame Reset
DMA Transfer Enable 1

When the CPU sets the DE bit HIGH, the 1.64702 is programmed to
request external DMA controller service. DMA service request can
be used for either loading configuration data, transfer-through data to
the video memory or, in conjunction with the START bit, for transfer-
ring code data to or from the L64702 during compression or decom-
pression.

DE Definition

0] Disable DMA Transfer Request

1 Enable DMA Transfer Request

Start Operation Control Bit 2

When the CPU sets the START bit HIGH, the L.64702 enters the
operation mode and begins image compression or decompression.
Initially, the CPU must clear the INIT bit LOW to allow the start of
operation. During operation, an external CPU can arbitrarily reset the
START bit, which pauses operation of the internal JPEG processing
unit. There is an internal pipeline delay from the deassertion of
START until the chip enters the pause state, which is indicated by the
INIT flag set to a one in the STS Register. An external CPU can eval-
uate internal memory and registers by first checking the INIT flag in
the STS Register. If the flag is set, setting the INIT bit in the SMR
Register allows you to access the Group 2 tables and registers.

Setting the START bit after clearing the INIT bit (if set) resumes the
operation from the point at which the L64702 entered the pause state.
START remains set even after reaching the End Of Image (EOI)

34 Internal Aegisters and Data Tables

B 5304604 DOl1bL45 338 EELLC

INIT

TRTH

condition for both compression and decompression. To restart with a
new image, a frame reset must be performed and then the START bit
can be set again.

START Definition

0 Stop L64702 Operation
1 Start L64702 Operation
Initialize Mode 3

When the CPU sets the INIT bit HIGH the 164702 enters the Initial-
ize mode. In this mode, the external system rather than the internal
JPEG unit has access to the Group 2 tables and registers. If the CPU
sets INIT during JPEG processing, the processing operation may be
disrupted. To avoid processing disruption, the INITFLG flag in the
STS Register indicates when the L64702 is ready to be initialized.
The INITFLG flag in the STS Register should be set before you set
the INIT bit in the SMR Register.

INIT Definition

0 Group 2 Elements Cannot be Accessed

1 Group 2 Elements Can be Accessed
Transfer Through 4

When the CPU sets the TRTH bit HIGH, the system L64702 video
memory controller can be used by the system to access video memory
through the L64702, and transfer data between the system bus and the
video bus by means of read or write transfer cycles. While this oper-
ation is in progress, the video bus is still used for video memory
refresh cycles and the video memory transfer operations set up by
VTRR and VIRC. The JPEG processing unit of the L64702 is com-
pletely bypassed during the transfer-through operation.

If the transfer-through operation is initiated while JPEG processing is
underway, the bit stream will be corrupted because the JPEG process
and transfer-through both used the FIFO.

The TRTH and INIT bits should not both be set HIGH at the same
time.

TRTH Definition
0 Normal Read/Write Operation
1 Transfer Through Operation

Internal Registers and Data Tables 35

BN 5304804 O0LlbY4k 274 ML C

3-6

BURST

THR_IE

EOQA_IE

LCIF_IE

Burst Level (9:5]

These five bits specify the FIFO burst level, or the number of words
to be transferred in a burst transfer interval. The bits are meaningful
only when the L64702 is in the image compression, decompression,
or the transfer-through mode. The specified burst level affects the
handshake mechanism of compressed data transfer between the sys-
tem memory and the FIFO. In general, it affects the functioning of the
System DMA Request (SDRQ) pin, used in DMA transfers, and the
functioning of the THR interrupt flag, used in the CPU transfer mode.

BURST Definition

00001 Burst Level 1
00010 Burst Level 2

1111 Burst Level 31
00000 Burst Level 32

FIFO Burst Level Interrupt Enable 10

The CPU may set THR_IE to enable an interrupt when the FIFO burst
level is reached. During compression (ENC = 1), if the number of
words in the FIFO is greater than or equal to the specified burst level
(see BURST field) the L64702 sets the THR bit in the STS. During
decompression (ENC = 0), if the number of words in the FIFO is less
than or equal to the specified burst level, the L64702 sets the THR bit.

THR_IE Definition

0 Disable Burst Level Interrupt
1 Enable Interrupt Upon Burst Level
End Of Active Window Interrupt Enable 11

The CPU may set EOA_IE to enable an interrupt when an end-of-
active window condition has been reached. This condition occurs
when the last pixel in the specified active window has been accessed.
If this condition occurs, the L64702 then sets the EOA bit in the STS.

EOA_IE Definition

0 Disable End-of-Active Window Interrupt
1 Enable Interrupt Upon End-of-Active Window Condition
Last Code In FIFO Interrupt Enable 12

The CPU may set LCIF_IE to enable an interrupt when the JPEG pro-
cessing unit writes the last codeword into the FIFO during compres-
sion (ENC = 1), regardless of whether or not the burst level has been

Internal Registers and Data Tables

B 5304804 D011b47 100 EELLC

RI_IE

EOIL_IE

IMC_IE

reached. If this condition occurs, the L64702 then sets the LCIF bit in
the STS.

LCIF_IE Definition

0 Disable Last Code in FIFO Interrupt
1 Enable Interrupt on Last Code in FIFO
Restart Marker Code Interrupt Enable 13

The CPU may set RI_IE to enable an interrupt when the L64702
detects a RST marker in the code data stream. If this condition occurs,
the L64702 decompresses all the data entered prior to the reset
marker, resets the DC predictors, resumes operation, then sets the
RI_IE bit in the STS. RI_IE is set during decompression only

(ENC = 0).

RI_IE Definition

0 Disable Restart Marker Code Interrupt

1 Enable Interrupt on Restart Marker Code
End Of Image Interrupt Enable 14

The CPU may set EOI_IE to enable an interrupt when the L64702
detects an EOI (End-of-Image) marker in the code data stream. If this
condition occurs, the L64702 sets the EOI bit in the STS and then
decompresses all the data received. Meanwhile, video processing
continues until the L.64702 sets the EOA bit in the STS, indicating the
end of the active window. The EOI condition is active during decom-
pression only (ENC = 0).

EOI _IE Definition

0 Disable End-of-Image Interrupt
1 Enable Interrupt on End-of-Image
Ilegal Marker Code Interrupt Enable 15

The CPU sets IMC_IE to enable the illegal marker code interrupt.
When IMC_IE is set, the L64702 generates an interrupt upon detect-
ing an illegal marker code in the code bit stream during decompres-
sion only (ENC = 0). If the 164702 detects an illegal marker code, it
sets the IMC bit in the STS and terminates execution. In order to
restart operation, you must reset the L64702.

IMC_IE Definition

0 Disable Interrupt
1 Enable Interrupt on Illegal Marker Code

Internal Registers and Data Tables 3-7

I 5304404 0011648 O4? EELLC

System Status The STS Register, shown in Figure 3.3, provides the external system with

Register (STS) status information on the L.64702. This 16-bit register is read-only. It pro-
vides information on the number of words in the FIFO and any information
that may cause generation of an internal interrupt condition. The interrupt
status bits are set regardless of the enable interrupt bits in the SMR Regis-
ter. The internal status is updated every L.64702 CLK, and when the CPU
reads the status, the current information is buffered in a special purpose
STS buffer, which locks the STS value until the end of the CPU status read.

Figure 3.3
System Status
Register
| -¢—nterrupt Status —»
1% 14 13 12 N 10 9 4 3 2 1 0
IMC | EOI | RI |LCIF |EOA | THR FIFCNT INITFLG | TRTH | INIT | START
START Start Operation Control Bit 0
This bit gives the current status of the START bit in the SMR
Register.
INIT Initialize Mode 1

This bit gives the current status of the INIT bit in the SMR Register.

TRTH Transfer Through 2
This bit gives the current status of the TRTH bit in the SMR Register.

INITFLG Initialize Flag 3
When the L.64702 sets the INITFLG flag, it indicates that the internal
JPEG processing unit is paused or in the idle state and the Group 2
tables and registers can be accessed. The INIT bit in the SMR Regis-
ter can be set only when the INITFLG flag in the STS Register is set.

INITFLG Definition

0 The L64702 is not in the INIT State
1 The L64702 is in the Idle state, and initialization can be done
FIFCNT FIFO Word Count [9:4]

The L64702 sets these six bits to the number of codewords currently
in the FIFO. This information is useful when the CPU or DMA con-
troller needs to burst out the remainder of the data not on a specified
burst boundary, which may occur at the end of a compressed data

3-8 Internal Registers and Data Tables

M 5304804 00L1b49 T43 WMELLC

THR

EOA

LCIF

stream. The number of codewords in the FIFO is also useful for the
CPU to know as it polls the FIFO.

FIFCNT Definition

000000 FIFO Empty
000001 One Word in the FIFO

011111 31 Words in the FIFO
100000 32 Words in the FIFO

FIFO Threshold 10

The 164702 sets THR if the FIFO burst level is reached. It also gen-
erates an interrupt if the THR_IE bit is set in the SMR when the FIFO
burst level is reached. During compression (ENC = 1), the L64702
sets THR when the number of words in the FIFO is greater than or
equal to the specified burst level (see the THRL field). During decom-
pression (ENC =0), the 64702 sets THR when the number of words
in the FIFO is less than or equal to the specified burst level. After
reset, the L64702 clears THR to zero.

THR Definition

0 Burst Level not Reached

1 Burst Level Reached

End Of Active Window 11

The L64702 sets EOA when it detects that an end-of-active window
condition has been reached. It also generates an interrupt if the
EOA_IE bit is set in the SMR. The end-of-active window condition
occurs when the last pixel in the specified active window has been
accessed. EOA stays set until a hardware or software reset occurs.
After a reset, the L64702 sets EOA to a logical zero and disables the
interrupt.

EOA Definition

0 No End-of-Active Window Reached

1 End-of-Active Window Reached

Last Code In FIFO 12

The L64702 sets LCIF HIGH when the JPEG processing unit writes
the last codeword into the FIFO. It also generates an interrupt if the
LCIF_IE bit is set in the SMR. The L64702 writes to the FIFO during

{nternal Registers and Data Tebles 39

B 5304804 0011L50 775 EMLLC

compression (ENC = 1). After reset, the L64702 clears LCIF to zero
and disables the interrupt.

LCIF Definition
0 Last Codeword not Written in FIFO
1 Last Codeword Written in FIFO
RI Restart Marker Code 13

The L64702 sets RI when it detects a RST marker code in the code
data stream during decompression (ENC = 0). RST marker codes
include all the codes in the range from 0xFFDO through OxFFD7. The
L64702 also generates an interrupt if the RI_IE bit is set in the SMR,
Once Rl is set, the L64702 enters a Restart Interval, during which the
previously received code data is decompressed. At this point, the
CPU should stop sending compressed data to the FIFO. Otherwise,
data corruption may occur. Once all the previously received data has
been decompressed, the CPU may continue sending compressed data
to the L64702 over the system interface. After reset, the L64702 sets
RI to a logical zero and disables the interrupt.

RI Definition
0 No RST Marker Code has been Detected
1 RST Marker Code has been Detected
EOI End Of Image 14

The L64702 sets EOI when it detects an EOI (End of Image) marker
in the code data stream. An EOI code has the value of 0xFFD9. The
L64702 also generates an interrupt if the EOI_IE bit is set in the
SMR. This bit can be set during decompression only (ENC = (). EOI
remains set until a hardware or software reset sets it to zero. During
compression EOI will always remain a logical zero. After reset, the
164702 sets EOI to a logical zero and disables the interrupt.

EOI Definition
0 No End-of-Image Marker Detected
1 End-of-Image Marker Detected
IMC Illegal Marker Code 15

The L64702 sets IMC during decompression (ENC = 0) if it detects
an illegal marker code in the code bit stream. An illegal marker code
is any code that has a value of 0xFFxx where the xx byte is neither
00, D9, nor in the range DO through D7. It also generates an interrupt
if the IMC_IE bit is set in the SMR. If an illegal marker code is
detected, the L64702 stops execution and enters the HALT state. A

3-10 Internal Registers and Data Tables

B 5304804 0011651 L31 MALLC

software reset causes the L64702 to exit from the HALT state. At this
point, operation must start over. Decompression cannot continue
from the point where the execution was terminated. After reset, the
bit is cleared to zero.

MC Definition
0 No Illegal Marker Code Detected
1 Iilegal Marker Code Detected

34
Group 2Registers
and Tables

Group 2 contains all the registers and tables that determine L64702 opera-
tion. From the JPEG perspective, the Group 2 resources can be pro-
grammed with values for the DCT/IDCT conversion matrix, quantization
factors, and the Huffman tables. From the video perspective, you can load
the nine Color Space Conversion coefficients and a set of Video Controller
registers.

The L64702 uses Group 2 registers and tables during operation. Changing
the values in these registers and tables during operation may corrupt the

results of the operation in progress. The INIT bit in the SMR Register may
be used to protect Group 2 resources during operation. If you want to read
or write Group 2 resources, first set the INIT bit. When the L64702 has fin-
ished with the operation in progress, it sets the INITFLG flag in the STS

Register to indicate that Group 2 resources are ready to be read or written.

Group 2 tables and registers are accessible to the system only if the INIT
bit in the SMR Register is set—otherwise access is not allowed and the
164702 ignores any attempt to access Group 2. Because Group 2 contains
tables and registers organized in a register file, you must use the APR Reg-
ister to address specific locations in the group. You must initialize the APR
Register to the starting address of the destination memory in Group 2 prior
to the access of Group 2. The APR Register is automatically incremented
by one at the end of each memory read or write cycle to Group 2.

A CPU can access Group 2 by setting the SRS[1:0] pins to 10,. A DMA
controller can access Group 2 registers and tables when the INIT and DE
bits in the SMR Register are set HIGH.

Figure 3.4 shows the overall memory mapping of Group 2 registers and
tables within the L64702. Avoid using the reserved areas within the mem-
ory map, because the L64702 may overwrite these areas during operation.

Internal Registers and Data Tables 3-11

M 5304804 00LLE52 578 EMELLC

Figure 3.4
Overall Group 2 0x428 CSC_22
| E—
: X
Mapping 0x425 TSC_12
0x424 CSC_n
Ox7FF > 0x423 CSC_10
Reserved 0x422 csC_02
0x429 0x421 CsC_m
0x428 0x420 CSC_00
Color Space Conversion Ox41F
Coefficients
0x419 Reserved
0x420 0x418
0x41F 0x417
Ox417 Reserved 0x416 NiZ)
0x416 0x415 TSA_H({8-MSB}
0x414 TSA_L{16-LSB)

Video Control Registers 0x413 TRTH_ADDR_H(8-MSB)

0x412 TRTH_ADDR_L(16-LSB}

Y

0x400 0x411 SA_3_H(8-MSB)
OX3FF o 0x410 SA_3_L{16-L3B)
0x3C0 Quantization Table 3 Ox40F SA_2_H(B-MSB)
0x3BF o 0x40E SA_2_L{16-LSB)
oxago| Quantization Table 2 0x40D SA_1_H(E-MSB]
0x37F . 0x40C SA_1_L(16-LSB)
0x340 Quantization Table 1 0X40B SA_0_HiG.MSB]
g;ggg Quantization Table 0 [())))((t?)/; SA‘OBI;iig LSB)
Ox2FF 0x408 DP_2
0x2C0 DCT/IDCT Factors Oxd07 BF 1
g:gg; Miscellaneous Registers gi:gg H[:)Z;\(IJS
0x2B7 0x404 H2_W2
0x403 H1_W1
Huffman Tables 0x402 Ho_wo
0x401 MCU_VD
0x400 MCU_HD
0x000
fe—— 16bits — 0x2BF SCR
0x2BE JCR
0x2BD AW
0x2BC AH
- 0x2BB W
"~ 0x2BA MBS
0x2B9 MBS_X
0x2B8 MBS_Y

f—— 16 bits —_—

3-12 Internal Registers and Data Tables

M 5304804 0011b53 404 EELLC

Group 2 Register ~ Table 3.2 summarizes the Group 2 registers and tables, including register

and Table or table name, function, access type, internal address mapping location,
Summary and bit width.
Table 3.2

Group 2 Registers and
Tables Summary

Register Function Access Type Int Addr Mapping Width
Huffman Tables

HFT Huffman Tables (0 and 1) R/W 0x000-0x2B7 12 bits
DCT Factors Register

DCT DCT Factors R/W 0x2CO-0x2FF 12 bits
Quantization Tables

QT3 Quantization Table Number 3 R/W 0x3C0-0x3FF 8 bits
QT2 Quantization Table Number 2 R/W 0x380-0x3BF 8 bits
QT1 Quantization Table Number 1 R/W 0x340-0x37F 8 bits
QTo Quantization Table Number 0 R/W 0x300-0x33F 8 bits
Video Control Registers

TI Transfer Increment Register R/W 0x416 12 bits
TSA_H Transfer Start Address High Register R/W O0x415 8 bits
TSA_L Transfer Start Address Low Register R/W 0x414 16 bits
TRTH_ADDR_H Transfer Through Address High Word R/W 0x413 8 bits
TRTH_ADDR_L Transfer Through Address Low Word R/W 0x412 16 bits
SA_3_H Start Address Plan 3 High Word R/W 0x411 8 bits
SA3_L Start Address Plan 3 Low Word R/W 0x410 16 bits
SA 2 H Start Address Plan 2 High Word R/W 0x40F 8 bits
SA2 L Start Address Plan 2 Low Word R/W 0x40E 16 bits
SA_1_H Start Address Plan 1 High Word R/W 0x40D 8 bits
SA_1 L Start Address Plan 1 Low Word R/W 0x40C 16 bits
SA_O_H Start Address Plan 0 High Word R/W 0x40B 8 bits
SA_O_L Start Address Plan 0 Low Word R/W 0x40A 16 bits
DP_3 Display Pitch for Plan 3 R/W 0x409 12 bits
DP_2 Display Pitch for Plan 2 R/W 0x408 12 bits
DP_1 Display Pitch for Plan 1 R/W 0x407 12 bits
DP_0 Display Pitch for Plan 0 R/W 0x406 12 bits
H3_W3 Number of lines and pixels in last MCU 3 R/W 0x405 15 bits
H2_W2 Number of lines and pixels in last MCU 2 R/W 0x404 15 bits
H1_Wi1 Number of lines and pixels in last MCU 1 R/W 0x403 15 bits
HO_WO0 Number of lines and pixels in last MCU 0 R/W 0x402 15 bits
MCU_VD MCU Horizontal Delay R/W 0x401 10 bits
MCU_HD MCU Horizontal Delay R/W 0x400 10 bits

(Sheet 1 of 2)

Internal Registers and Data Tables 3-13

B 5304804 0011b54 3u0 MMLLC

Table 3.2 (Continued)
Group 2 Registers and
Tables Summary

Register Function Access Type Int Addr Mapping Width
Miscellaneous Registers

SCR System Configuration Register R/W 0x2BF 16 bits
JCR JPEG Control Register R/W 0x2BE 16 bits
AW Active Window Width R/W 0x2BD 9 bits
AH Active Window Height R/W 0x2BC 9 bits
w Image Width R/W 0x2BB 9 bits
MBS Macro Block Size R/W 0x2BA 16 bits
MBS_X Macro Block Size in the Y Direction R/W 0x2B9 16 bits
MBS_Y Macro Block Size in the X Direction R/W 0x2B8 16 bits
Color Space Conversion Registers

CSC_22 Color Space Conversion Component 22 R/W 0x428 11 bits
CSC_21 Color Space Conversion Component 21 R/W 0x427 11 bits
CSC_20 Color Space Conversion Component 20 R/W 0x426 11 bits
CSC_12 Color Space Conversion Component 12 R/W 0x425 11 bits
CSC_l11 Color Space Conversion Component 11 R/W 0x424 11 bits
CSC_10 Color Space Conversion Component 10 R/W 0x423 11 bits
CSC_02 Color Space Conversion Component 02 R/W 0x422 11 bits
CSC_01 Color Space Conversion Component 01 R/W 0x421 11 bits
CSC_00 Color Space Conversion Component 00 R/W 0x420 11 bits
(Sheet 2 of 2)

Huffman Code The L64702 uses a proprietary algorithm of mapping standard Huffman

Tables tables into internal codewords that are loaded during initialization. The
algorithm allows you to load two sets of Huffman code tables. Each set of
tables contains one AC table and one DC table and coding/decoding.

You need to translate the regular Huffman table values to values that the
L64702 understands. This translation is supported by the supplied L64702
Huffman table translator. Each value in the table is 12 bits wide.

The 164702 uses different tables, depending on whether compression or
decompression is being performed. The tables must be loaded appropri-
ately as the encoding or decoding direction changes.

Table 3.3

Huffman Tables

Register Function Access ‘1_'ype Int Addr Mapping Width
HFT Huffman Tables R/W 0x000-0x2B7 12 bits

3-14 Internal Registers and Data Tables

B 5304804 DOL1LSS 287 EELLC

System The System Configuration Register contains a set of configuration bits that
Configuration determine the type of L64702 operation. The register contains bits that
Register (SCR) determine the operation direction (encode or decode), specify the image

data structure, determine the memory refresh cycle, and determine the
direction of the video memory serial port, image capture, or display.

Figure 3.5 15 14 13 12 N 10 g 8 7 6 5 4 3 1 0
System SRESET|AEQ!I| POWN | SP2 | sP1|spo|sc2|sci|scofcn| 1S RR ENC
Configuration
Register

ENC Encode/Decode Processing Direction 0

The ENC bit determines the direction (compression or decompres-
sion) of L64702 image processing. When the ENC bit is set HIGH,
the 1.64702 encodes image data. If the bit is reset LOW, the L64702
decodes image data. The START bit must be HIGH to enable image
encoding or decoding.

ENC Definition

0 Image Decoding (Decompression)
1 Image Encoding (Compression)

The ENC bit also sets the direction of read-through and write-through
operations.

ENC Definition

0 Write-through
1 Read-through
RR Refresh Rate [3:1]

These three bits determine the refresh rate period of the external
video memory. When active, the internal refresh counter generates an
internal request to perform a periodic CAS-before-RAS refresh cycle.
The specified value for RR corresponds to the following refresh rate
in L64702 CLK cycles:

Refresh Rate= (RR + 1) * 64

Internal Registers and Data Tables 3-15

BN 5304804 D0Llb56 113 EELLC

3-16

IDS

C_D

RR Definition

000 64 Cycles Refresh
001 128

010 192

011 256

100 320

101 384

110 448

111 No Refresh

Image Data Structure [5:4]
These two bits determine the image data structure over the video bus
and also determine the external video memory image organization.

IDS Definition

00 Multisource source color (RR, ...R, GGG, ...G, BBB, ...B), consisting
of three color components occupying three separate regions in the
video memory.

01 Unpacked color (RGBx), made up of a three-color component struc-
ture where VADB{23:0] holds the actual data (RGB) and
VADB[31:24] is ignored.

10 Packed color (RGBR, ...), consisting of a three-color component
structure occupying the entire 32-bit video data bus.

11 Sequential components (CCC ... C, MMM .. M, YY ... Y, KKK ...
K) mode, which turns off the color space conversion logic from one
to four components occupying four separate regions in the video
memory. The sequential components mode fully supports the JPEG
baseline system as far as the number of components and the subsam-
pling scheme.

Capture or Display 6

The C_D bit determines what kind of video shift register memory
cycle the L64702 will perform, as well as the direction of the video
memory serial port data. If set HIGH, the L64702 is in the image cap-
ture mode. In this mode, the L64702 responds to the video request
transfer signal, VTRS, by performing a pseudo write cycle, and to the
video transfer request input, VT TR, by performing alternate write
cycles. Image capture accomplishes a transfer of image data from the
video memory serial shift register to the video memory core. For
more detailed information on pseudo write cycles and alternate write
cycles, please refer to Chapter 10, “Video Memory Interface
Timing.”

Internal Registers and Data Tables

B 5304804 D011b57 05T EMLLC

When C_D is zero, the L64702 performs an image display operation
by transferring data between the video core memory and the video
memory serial shift register each time a transfer request has been

detected.
C_D VIRS VIRR Definition
0 Normal Read Transfer Pseudo Split Read Image Display

1 Pseudo Write Transfer Alternate Write Transfer Image Capture

Figure 3.6 shows the image capture and image display modes of the
L.64702 as they relate to the state of the C_D bit.

Figure 3.6
Image Capture and Vi Vid
Display Modes cloreeo C|0reeo
Memory Memory
Image Display Mode Image Capture Mode
{C/D=0) (C/b=1)
SCo Sign—Color Space Conversion Component 0 7
Sign of Color Space Conversion Component 0. This bit affects the
sign of the low-byte component (bit O to bit 7) between the MCU
buffer and the CSC unit. If set HIGH, the component is represented
as a two’s complement number. If cleared LOW, the component is
represented as an unsigned number.
SCo Definition
0 Unsigned Number
1 Two’s Complement Number
SC1 Sign—Color Space Conversion Component 1 8
Sign of Color Space Conversion Component 1. This bit affects the
sign of the middle-byte component (bit 8 to bit 15) between the MCU
buffer and the CSC unit. If set HIGH, the component is represented
as a two’s complement number. If cleared LOW, the component is
represented as an unsigned number.
SCI1 Definition
I 0 Unsigned Number
i 1 Two’s Complement Number

Internal Registers and Data Tables 3-17

mm 5304804 0011B58 T EELLC

3-18

sC2

SPO

SP1

Sp2

Sign—Color Space Conversion Component 2 9

Sign of Color Space Conversion Component 2. This bit affects the
sign of the high-byte component (bit 16 to bit 23) between the MCU
buffer and the CSC unit. If set HIGH, the component is represented
as a two’s complement number. If cleared LOW, the component is
represented as an unsigned number.

sC2 Definition

0 Unsigned Number

1 Two’s Complement Number

Sign—Pixel Component 0 10

Sign of the pixel value for Component 0. This bit affects the sign of
the low-byte component (bit 0 to bit 7) on the video bus, VADB. If set
HIGH, the component is represented as a two’s complement number.
If cleared LOW, the component is represented as an unsigned
number.

SPo Definition

0 Unsigned Number

1 Two’s Complement Number

Sign—Pixel Component 1 1

Sign of the pixel value for Component 1. This bit affects the sign of
the middle-byte component (bit 8 to bit 15) on the video bus, VADB.
If set HIGH, the component is represented as a two’s complement
number. If cleared LOW, the component is represented as an
unsigned number.

SP1 Definition

0 Unsigned Number

1 Two’s Complement Number

Sign—Pixel Component 2 12

Sign of the pixel value for Component 2. This bit affect the sign of
the high-byte component (bit 16 to bit 23) on the video bus, VADB.
If set HIGH, the component is represented as a two’s complement
number. If cleared LOW, the component is represented as an
unsigned number.

SP2 Definition

0 Unsigned Number
1 Two’s Complement Number

Internal Registers and Data Tables

BN 5304804 0011659 922 EELLC

PDWN Power Down 13
The PWDN bit, when set, deactivates the high density RAMs and
greatly reduces the static power consumption of the L64702, This bit
reduces the current by 125 mA. The internal content of the RAMS is
retained. If this bit is set HIGH during the middle of an operation,
data will be corrupted. PWDN must be set between images only. This
bit must be LOW when the L64702 is operating.
PDWN Definition
0 Full Power Consumption
1 Reduced Power Consumption

AEOI Add End-of-Image Marker Code 14
When set HIGH, the AEOI bit causes the L64702 to append an
0xFFD9 marker code at the end of image compression.
AEOI Definition
0 Do Not Add 0xFFD9 Marker Code
1 Add 0xFFD9 Marker Code

SRESET Software Reset 14

The SRESET bit, when set HIGH, resets the L64702. Writing a zero
to this bit ends the reset condition. Unlike FRESET, a HIGH on
SRESET causes a total reset of the L64702 as does assertion of the
RESET input.

SRESET Definition

0 Do Not Reset the L64702
1 Reset the 1.64702

JPEG
Configuration
Register (JCR)

Figure 3.7
JPEG Configuration
Register (JCR)

The 16-bit JPEG Configuration Register (JCR) determines which Huffman
table and which quantization table will be used by each of the color com-
ponents during operation. For each color component, you can select among
two DC code tables, two AC code tables, and four quantization tables. The
decision on when and how to use the tables for each component is deter-

mined by the sampling registers.

1 4 13 12 1 1w 9 8 7 6 5 4 3 2 1 0

a3 Q2 o ao AC3 | AC2 } AC1 | ACO | DC3 | DC2 | DC1 | DCO

Internal Registers and Data Tables 3-19

M 5304804 00LLbLO GLuy MELLC

320

DCo

DC1

DC2

DC3

ACO

AC1

AC2

AC3

DC Code Table Selector for Component 0 0
Selects between DC Table 0 and DC Table 1 for Component 0. If
HIGH, this bit selects DC Table 1. If LOW, it selects DC Table 0.

DC Code Table Selector for Component 1 1
Selects between DC Table 0 and DC Table 1 for Component 1. If
HIGH, it selects DC Table 1. If LOW, it selects DC Table 0.

DC Code Table Selector for Component 2 2
Selects between DC Table 0 and DC Table 1 for Component 2. If
HIGH, it selects DC Table 1. If LOW, it selects DC Table 0.

DC Code Table Selector for Component 3 3
Selects between DC Table 0 and DC Table 1 for Component 3. If
HIGH, it selects DC Table 1. If LOW, it selects DC Table 0.

AC Code Table Selector for Component 0 4
Selects between AC Table 0 and AC Table 1 for Component 0. If
HIGH, it selects AC Table 1. If LOW, it selects AC Table 0.

AC Code Table Selector for Component 1 5
Selects between AC Table 0 and AC Table 1 for Component 1. If
HIGH, it selects AC Table 1. If LOW, it selects AC Table 0.

AC Code Table Selector for Component 2 6
Selects between AC Table 0 and AC Table 1 for Component 2, If
HIGH, it selects AC Table 1. If LOW, it selects AC Table 0.

AC Code Table Selector for Component 3 7
Selects between AC Table 0 and AC Table 1 for Component 3. If
HIGH, it selects AC Table 1. If LOW, it selects AC Table 0.

Internal Registers and Data Tables

B 5304804 001Llbkl 580 EELLIC

Qo Quantization Table Selectors [9:8]
for Component 0
This two-bit field selects the quantization table for Component 0. The
value of the field corresponds to the number of the quantization table
to be used: Table 0, 1, 2, or 3.

Q0 Definition
00 Select Quantization Table 0
01 Select Quantization Table 1
10 Select Quantization Table 2
11 Select Quantization Table 3
Q1 Quantization Table Selectors [11:10]

for Component 1

This two-bit field selects the quantization table for Component 1. The
value of the field corresponds to the number of the quantization table
to be used: Table 0, 1, 2, or 3.

Q1 Definition
00 Select Quantization Table 0
01 Select Quantization Table 1
10 Select Quantization Table 2
11 Select Quantization Table 3
Q2 Quantization Table Selectors [13:12]

for Component 2

This two-bit field selects the quantization table for Component 2. The
value of the field corresponds to the number of the quantization table
to be used: Table 0, 1, 2, or 3.

Q2 Definition
00 Select Quantization Table 0
01 Select Quantization Table 1
10 Select Quantization Table 2
11 Select Quantization Table 3
Q3 Quantization Table Selectors [15:14]

for Component 3

This two-bit field selects the quantization table for Component 3. The
value of the field corresponds to the number of the quantization table
to be used: Table 0, 1, 2, or 3.

Internal Registers and Data Tables 3-21

B 5304804 00llkbke2 417 EELLC

03 Definition

00 Select Quantization Table 0
01 Select Quantization Table 1
10 Select Quantization Table 2
11 Select Quantization Table 3

Active Height The nine-bit Active Height Register determines the Active Window height

Register (AH) of a specific color component. Both the AH Register and the Height Width
(Hx_Wx) Register specify the total number of MCUs in the active window
area, counted in the vertical direction.

Figure 3.8 15 S 8 0

Active Height 0 Active Height

Register (AH)
Equation 3.1 calculates the active height. Regardless of which color com-
ponent is selected, the AH result should be the same for all color compo-
nents.

Equation 3.1 _ _ _ :

Active Height AH =[Y/A1-1 where A=8xMBS_Y,

Calculation
The value in the AH Register represents the total integer number of MCUSs
minus one within the active window area. In other words, if the AH value
is 39, the number of MCU s in the vertical direction is actually 40, which
represents the number of MCUs starting at zero and ending at 39.
Refer to the subsection entitled “Active Window Height” on page 7-27 for
sample calculations.

Active Width The nine-bit Active Width (AW) Register determines the Active Window

Register (AW) width. It is used in conjunction with the Height Width Register for a par-
ticular color component to specify the total number of MCUs in the active
window area, counted in the horizontal direction.

1% 9 8 0
0 Active Width
3-22 Internal Registers and Data Tables

B 5304804 D0Llbb3 353 MELLC

Equation 3.2 specifies how the L64702 uses the AW and HO_WO0 Registers
(HO_WO Registers are explained later in this chapter) to calculate the num-
ber of MCUSs within the active window in the horizontal direction for color
component zero. The same equations apply to all color components (0, 1,

2, 0or 3).

g%%izoaw%fh AW = [(X)/B]1 -1 where B=8xMBS_X

Calculation . . .
The value in the AW Register represents the total integer number of MCUs
minus one within the active window area. In other words, if the AW value
is 39, the number of MCUs in the horizontal direction is actually 40, which
represents the number of MCU s starting at zero and ending at 39.
Refer to the subsection entitled “Active Window Width” on page 7-26 for
sample calculations.

Image Width The L64702 uses the Image Width parameter during decompression. Note

Register (IW) that during compression: 1) IW must be equal to the Active Width (AW),

and 2) the Horizontal Delay (HD) and Vertical Delay (VD) must be zero.

15 9 8 0
0 Image Width

Figure 3.9 shows a two-dimensional view of a compressed image, where
X is number of image pixels in the horizontal direction, and Y is the num-
ber of image lines in the vertical direction. This figure also shows that the
L64702 allows the decompression of a portion of the compressed image.
The space allocated to this decompressed portion of the image is called the
active image area and is specified by the horizontal delay (HD), vertical
delay (VD), Active Width (AW), and Active Height (AH) parameters.
Note that when HD is zero, the Image Width (IW) value equals AW.

Internal Registers and Data Tables 3-23

,‘

B 5304404 0011lbb4 29T EALLC

Figure 3.9 - X »
Active Image Area HD - w >
-t Ittt AW —
A f
VD
Y AH
Y
Figure 3.10 shows the meaning of display pitch (DP). Display pitch is the
address gap in the video memory between two adjacent vertical pixels, and
is equal to the width of the overall display.
Figure 3.10 e bP >~
Display Pitch ' '
Entire Display Screen
Figure 3.11 shows how the decompressed portion of an image (the active
image) is located within the overall display by using the SA (starting
address) parameter.
Figure 3.11 SA
Starting Address

3-24 Internal Registers and Data Tables

B 5304404 00116LS 1l2b EELLC

MacroBlock Size The MBS Register specifies how many Data Units (8 x 8 blocks) comprise

Register (MBS) a Minimum Code Unit (MCU) for each one of the four color components,
as defined in the JPEG standard. The values defined in this register define
the sampling ratio for the color components. For example, in the RGBX
mode, a 2:1:1 ratio indicates that two 8 x 8 blocks of the luminance com-
ponent (Y) are processed for each single 8 x 8 block of the remaining
chrominance (Cr, Cb) color components.

Figure 3.12 0 ,

Macro Block Size B 12 8 4 3 0

Register (MBS) MBS_3 MBS_2 MBS_1 MBS_0
MBS_0 Macro Block Size for Color Component § [3:0]

This field specifies the total number of Data Units (8 x 8 blocks) that
forms the macro block for Color Component 0.

MBS_0 Definition

0000 0 Data Units in the Macro Block
0001 1 Data Units in the Macro Block
0010 2 Data Units in the Macro Block
1010 10 Data Units in the Macro Block
MBS_1 Macro Block Size for Color Component 1 [7:4]

This field specifies the total number of Data Units (8 x 8 blocks) that
forms the macro block for Color Component 1.

MBS_1 Definition

0000 0 Data Units in the Macro Block
0001 1 Data Units in the Macro Block
0010 2 Data Units in the Macro Block
1010 10 Data Units in the Macro Block
Internal Registers and Data Tables 325

E 5304804 001l6bb Ob2 EELLC

MBS_2 Macro Block Size for Color Component 2 [11:8]
This field specifies the total number of Data Units (8 x 8 blocks) that
forms the macro block for Color Component 2.

MBS 2 Definition

0000 0 Data Units in the Macro Block
0001 1 Data Units in the Macro Block
0010 2 Data Units in the Macro Block
1010 10 Data Units in the Macro Block
MBS_3 Macro Block Size for Color Component 3 [15:12]

This field specifies the total number of Data Units (8 x 8 blocks) that
forms the macro block for Color Component 3.

MBS 3 Definition

0000 0 Data Units in the Macro Block
0001 1 Data Units in the Macro Block
0010 2 Data Units in the Macro Block
1010 10 Data Units in the Macro Block

MacroBlock Size The MBS_Y Register specifies the number of Data Units (8 x 8 blocks) in

inthe Y Direction the Y, or vertical, direction for each color component. The specified num-

Register (MBS_Y) ber of data units (8 x 8 blocks) determines the sampling ratio in the vertical
direction. The number specified should be less than or equal to the number
specified in the MBS Register for the particular component.

15 12 N 8 7 3 0
MBS_Y_3 MBS_Y_2 MBS_Y_1 MBS_Y_0

MBS_Y_0 Macro Block Size in the Y Direction [3:0]
for Color Component 0
This field specifies the total number of Data Units (8 x 8 blocks) in
the Y, or vertical, direction for Color Component 0. The value of this

3-26 Internal Registers and Data Tables

B 5304804 00L1LE? TTY MALLC

field must be less than or equal to the value for MBS_0 specified in
the MBS Register.

MBS_Y 0 Definition

0000 0 Data Units in the Macro Block
0001 1 Data Units in the Macro Block
0010 2 Data Units in the Macro Block
1010 10 Data Units in the Macro Block
MBS_Y_1 Macro Block Size in the Y Direction [7:4]

for Color Component 1

This field specifies the total number of Data Units (8 x 8 blocks) in

the Y, or vertical, direction for Color Component 1. The value of this
field must be less than or equal to the value specified for MBS _1 in
the MBS Register.

MBS_Y_1 Definition

0000 0 Data Units in the Macro Block in the Y Direction
0001 1 Data Units in the Macro Block in the Y Direction
0010 2 Data Units in the Macro Block in the Y Direction
1010 10 Data Units in the Macro Block

MBS_Y_2 Macro Block Size in the Y Direction [11:8]

for Color Component 2

This field specifies the total number of Data Units (8 x 8 blocks) in

the Y, or vertical, direction for Color Component 2. The value of this
field must be less than or equal to the value specified for MBS_2 in
the MBS Register.

MBS_Y 2 Definition

0000 0 Data Units in the Macro Block in the Y Direction
0001 1 Data Units in the Macro Block in the Y Direction
0010 2 Data Units in the Macro Block in the Y Direction
1010 10 Data Units in the Macro Block
Internal Registers and Data Tables 327

B 5304804 D0Llbb8 935 mLLC

MBS_Y_3 Macro Block Size in the Y Direction [15:12]
for Color Component 3
This field specifies the total number of Data Units (8 x 8 blocks) in
the Y, or vertical, direction for Color Component 3. The value of this
field must be less than or equal to the value specified for MBS_3 in
the MBS Register.

MBS_Y 3 Definition

0000 0 Data Units in the Macro Block in the Y Direction
0001 1 Data Units in the Macro Block in the Y Direction
0010 2 Data Units in the Macro Block in the Y Direction
1010 10 Data Units in the Macro Block

Macro Block Size
in the X Direction
Register
{MBS_X)

3-28

The MBS_X Register specifies the number of Data Units (8 x 8 blocks) in
the X direction for each color component. The specified number of data
units (8 x 8 blocks) determines the sampling ratio in the horizontal direc-
tion. The number specified should be less than or equal to the number spec-
ified in the MBS Register for the particular component.

15 12 Nn 8 1 3 0

MBS_X_3 MBS_X_2 MBS_X_1 MBS_X_0

MBS_X_0 Macro Block Size in the X Direction [3:0]
for Color Component 0
This field specifies the total number of Data Units (8 x 8 blocks) in
the X, or horizontal, direction for Color Component 0. The value of
this field must be less than or equal to the value for MBS_0 specified
in the MBS Register.

MBS _ X 0 Definition

0000 0 Data Units in the Macro Block
0001 1 Data Units in the Macro Block
0010 2 Data Units in the Macro Block
1010 10 Data Units in the Macro Block

Internal Registers and Data Tables

B8 5304804 D01lb69 871 MELLC

MBS_X_1 Macro Block Size in the X Direction [7:4]
for Color Component 1
This field specifies the total number of Data Units (8 x 8 blocks) in
the X, or horizontal, direction for Color Component 1. The value of
this field must be less than or equal to the value specified for MBS_1
in the MBS Register.

MBS_X_1 Definition

0000 0 Data Units in the Macro Block in the X Direction
0001 1 Data Units in the Macro Block in the X Direction
0010 2 Data Units in the Macro Block in the X Direction
1010 10 Data Units in the Macro Block

MBS_X_2 Macro Block Size in the X Direction [11:8]

for Color Component 2

This field specifies the total number of Data Units (8 x 8 blocks) in

the X, or horizontal, direction for Color Component 2. The value of
this field must be less than or equal to the value specified for MBS_2

in the MBS Register.
MBS_X 2 Definition
0000 0 Data Units in the Macro Block in the X Direction
0001 1 Data Units in the Macro Block in the X Direction
0010 2 Data Units in the Macro Block in the X Direction
1010 10 Data Units in the Macro Block

MBS_X_3 Macro Block Size in the X Direction [15:12]

for Color Component 3
This field specifies the total number of Data Units (8 x 8 blocks) in
the X, or horizontal, direction for Color Component 3. The value of

Internal Registers and Data Tables 3-29

B 5304804 00L1L70 593 MELLC

this field must be less than or equal to the value specified for MBS_3
in the MBS Register.

MBS_X_3 Definition

0000 0 Data Units in the Macro Block in the X Direction
0001 1 Data Units in the Macro Block in the X Direction
0010 2 Data Units in the Macro Block in the X Direction
1010 10 Data Units in the Macro Block

DCT/IDCT Factors The L64702 contains a table with 64 entries for holding the DCT or IDCT
factors. The table is downloaded in raster block order. Figure 3.13 shows
the configuration of the DCT/IDCT table.

Figure 3.13 _
DCT/IDCT Table e 12bits ————]
Ox2FF
OCT/1DCT
Table 64 Entries
0x2C0 MDg2314
Quantization The 164702 contains four quantization tables that hold the quantization
Tables values for the DCT coefficients. The tables shown in Figure 3.14 are down-
loaded in raster block order. You can specify any one of the tables for each
color component.

3-30 Internal Registers and Data Tables

BN 5304804 0011671 42T EELLC

Figure 3.14 '
Quantization Tables < 8 bits >
Ox3FF T
Quantization Table 3 64 Entries
0x3C0 *
0x3BF f
Quantization Table 2 64 Entries
0x380 *
OX37F A
Quantization Table 1 64 Entries
0x340 #
0x33F }
Quantization Table 0 64 Entries
0x300 *

MCU Horizontal ~ This 10-bit signed register (nine bits plus sign) determines the number of

Delay Register MCU blocks that the JPEG processing unit skips in the horizontal direction

(MCU_HD) before writing image data into the MCU buffer. The specified number
should be less than or equal to zero.

15 10 9 0
0 MCU_HD

During a compression operation, this register should be cleared to zero.
When scrolling a small display window in a large compressed file, this reg-
ister should be programmed with the appropriate value: MCU_HD =-1 to
skip one MCU, MCU_HD = -2 to skip two MCUs, etc.

MCU Vertical This 10-bit signed register (nine bits plus sign) determines the number of
Delay Register MCU blocks that the L64702 skips in the vertical direction before writing
(MCU_VD) image data into the MCU buffer. The specified number should be less than
or equal to zero.
15 0 9 0
0 MCU_VD
Internal Registers and Data Tables 3-31

s 5304804 p0011k72 3kb mLLC

During a compression operation, this register should be cleared to zero.
When scrolling a small display window in a large compressed file, this reg-
ister should be programmed with the appropriate value: MCU_VD =-1 to
skip one MCU, MCU_VD = -2 to skip two MCUs, etc.

Height/Width
Component
Registers

Figure 3.15
W, and H, in the
Active Image

3-32

The video image is organized in terms of Minimum Code Units (MCUs).
An MCU is typically a two-dimensional area of image data containing

8 x 8 blocks. The L64702 contains four Height/Width Component regis-
ters: HO_WO, H1_W1, H2_W2, and H3_W3. These registers specify both
the number of pixels, Wy, in the last horizontal MCUs and the number of
lines, H,, in the last vertical MCUs of the display image.

Figure 3.15 shows the location of W, and H,, with regards to the active
image and the MCUs.

W,

=one MCU

Q3
s = undisplayed MCU
N portion

= undisplayed MCU
portion

The four Height/Width Component Registers are listed below.

15 14 8 7 5 4 0
0 HO 0 wWo
15 14 8 7 5 4 0
0 H1 0 w1
15 14 8 7 5 4 0
0 H2 0 w2

Internal Registers and Data Tables

M 5304404 00LLE73 272 EELLC

0 H3 0 w3

Each Height/Width register is associated with a specific color component.
The HO_WO Register is used in both the color modes image data structure
and the component sequential image data structure. The H1I_W1, H2_ W2,
and H3_W3 Registers are only used in the components sequential image
data structure mode.

Depending on the image structure, W, is specified either in terms of pixels
or groups of pixels. Table 3.4 shows the valid values of W, for three of the
four image structures and formats.

Table 3.4 W, Values

W, Values Image Data Structure Image Format 1:0:0, 1:1:1 2:1:1
RGBx Unpacked 0 through 7 pixels O through 15 pixels
RGBR Packed 2, 5 pixel groups 2, 5, 8, 11 pixel groups
RRRR... Multisource 0, 1 pixel groups 0, 1, 2, 3 pixel groups

In the component sequential image format, the value of W, depends on the
sampling value MBS_X:

W,=0—> (MBS_X_nx2)-1 for components sequential
The value of H, depends on the type of image structure as shown in Table
35.

Table 3.5 Image Format H, Values

H, Values

n Unpacked 0 through 7

Packed 0 through 7
Multisource 0 through 7

Component Sequential 0 through (MBS_Y_nx8) —1

Internal Registers and Data Tables 3-33

B 5304804 0011674 139 EELLC

Display Pitch Four registers specify the display pitch factor for each color component: ,
Registers DP_0, DP_1, DP_2, and DP_3, Display pitch is the address gap in the
video memory between two adjacent vertical pixels. The specified display
pitch should be always greater than or equal to the active window width.
11 0
Display Pitch
Start Address The L64702 contains four Start Address registers: SA_0,SA_1,SA_2, and
Registers SA_3. These 24-bit registers specify the starting address of the active win-
dow in video memory for Components O through 3. The SA_0 Register is
used in all color modes and in the component sequential mode for Compo-
nent 0. The SA_1 and SA_2 Registers are used in the multisource and com-
ponents sequential modes. The SA_3 Register is used in the components
sequential mode only.
Figures 3.16 through 3.19 show the Start Address Registers. The LOW
registers hold the 16 least-significant bits of the address and the HIGH reg-
isters hold the eight most-significant bits of the start address.
Figure 3.16 15 0
SA_0LOWand HIGH SA_0_Low
Registers
15 8 7 0
0 SA_0_High
Figure 3.17 15 0
SA_1LOWandHIGH SA_1 Low
Registers
15 8 7 0
0 SA_1_High
Figure 3.18 15 0
SA_2L0WandHIGH SA_2 Llow
Registers
15 8 7 0
0 SA_2_High

334

Internal Registers and Data Tables

B 5304804 DOL1L?5 075 EELLC

Figure 3.19
SA_3L0Wand HIGH
Registers

SA_3_Low

15 8 7 0
0 SA_3_High

Transfer- The 24-bit Transfer-Through Address Register specifies the starting video
Through Address memory address to be accessed during read-through or write-through
Register transfers. This register is used only in the transfer-though mode. The 16
least-significant bits are in TRTH_ADDR_L. The eight most-significant
bits are in TRTH_ADDR_H.
Figure 3.20 15 0
TRTH—ADDR TRTH_ADDR_L
Register
15 9 8 0
0 TRTH_ADDR_H
Transfer Start The 24-bit Transfer Start Address (TSA) Register specifies the starting
Address Register address for reading or writing VRAM raster scan pixel data. TSA_Low
holds the 16 least-significant bits and TSA_High holds the eight most-
significant bits. This register is used when the VTRS pin is controlling the
image capture or display features. At the falling edge of the VIRS signal,
the contents of TSA are transferred to a temporary video transfer latch. The
video transfer latch holds the updated transfer address created as a result
of incrementing the TSA Register by the value contained in the Transfer
Increment Register (TT).
Figure 3.21 15 0
TSA Register TSA Low
15 8 7 0
0 TSA_High

Internal Registers and Data Tables 3-35

B 5304804 0011k7b TOL EMLLC

Transfer The Transfer Increment (TT) Register specifies the incremental address
Increment space between adjacent scan lines. In regular use of the video transfer fea-
Register ture, this register’s value should be the size of the shift register in the
VRAM. On the falling edge of the VTRR signal, the L64702 adds the T1
value to the address value in the temporary video transfer latch start
address. Incrementing with the TI value is always done before the video
transfer cycle. The lower four bits of this register must always be set to
Zero.
15 12 N 4 3 0
0 Tl 0
Color Space Table 3.6 lists the nine 11-bit Color Space Conversion (CSC) Registers.
Conversion
Registers (CSC)
Table 3.6 Register Function Int Addr Mapping
gg?;efgi(a)zeﬁegisters CSC_22 Color Space Conversion Component 22 0x428
CSC_21 Color Space Conversion Component 21 0x427
CSC_20 Color Space Conversion Component 20 0x426
CSC_12 Color Space Conversion Component 12 0x425
CSC_11 Color Space Conversion Component 11 0x424
CSC_10 Color Space Conversion Component 10 0x423
CSC_02 Color Space Conversion Component 02 0x422
CSC_01 Color Space Conversion Component 01 0x421
CSC_00 Color Space Conversion Component 00 0x420

3-36

Each register contains a 3 x 3 matrix conversion value as shown below.
The value in each register corresponds to an individual matrix coefficient
value that corresponds to the name in the function column in the table.

15 n 10 0

Internal Registers and Data Tables

B 5304804 0011L77 9y8 MLLC

35 Group 3 contains the FIFO. The L64702 uses the FIFO: 1) to store data just

Group 3FIFO after it is compressed and before it is written into system memory, 2) just
after data is retrieved from system memory and before it is decompressed
for use by video memory, and 3) in read-through and write-through modes.
A CPU may access the FIFO by setting SRS[1:0] = 11,.

The L64702 may be programmed by an external CPU to allow the FIFO
operation to match system requirements.

When INIT = 0, the FIFO is accessible to the external system, and the
Group 2 resources of the 164702 are inaccessible to the external system.

The SMR Register contains bits that set the FIFO burst level, and enable
generation of an external interrupt when the burst level is reached. The
FIFO burst level indicates the number of words to be transferred in a burst
transfer interval. These bits are meaningful only when the L64702 is in the
image compression, image decompression, read-through, and write-
through modes. The specified burst level affects the handshake mechanism
of compressed data transfer between the system memory and the FIFO. In
general, the burst level affects the functioning of the System DMA Request
(SDRQ) pin, used in DMA transfers, and the functioning of the THR inter-
rupt flag, used in the CPU transfer mode.

The CPU may set the THR_IE bit to enable an interrupt when the FIFO
burst level is reached. During compression (ENC = 1), if the number of
words in the FIFO is greater than or equal to the specified burst level, the
L64702 sets the THR bit in the STS. During decompression, (ENC =0), if
the number of words in the FIFO is less than or equal to the specified burst
level, the L64702 sets the THR bit in the STS. After reset, the L64702
clears THR_IE to zero to disable the interrupt.

The CPU may set LCIF_IE to enable an interrupt when the JPEG process-
ing unit writes the last codeword into the FIFO during compression. If this
condition occurs, the .64702 then sets the LCIF bit in the STS. After reset,
the 164702 clears this flag to zero, disabling the interrupt.

The STS Register contains a FIFCNT field consisting of six bits that indi-
cate the number of words in the FIFQ. This information is useful when the
CPU or DMA controller needs to burst out the remainder of the data not on
a specified burst boundary, which may occur at the end of a compressed

Internal Registers and Data Tables 3-37

M 5304804 0D01l1lb78 A4y MELLC

data stream. The number of codewords in the FIFO is also useful for the
CPU to know as it polls the FIFO.

Refer to the descriptions of the SMR and STS Registers on page 3-3 and
page 3-8, respectively, for more information on the FIFO-related fields.

Accessing the
FIFO

3-38

The procedure for accessing the FIFO is the same regardless of the opera-
tion: compression, decompression, read-through, or write-through. The
FIFO can be accessed in either CPU or DMA transfer mode.

The following steps detail the procedure for accessing the L64702 FIFO:

1. The burst level must first be set in the SMR Register.

2. The external controller (CPU or DMA) must determine whether a
transfer to the FIFO is legal. The FIFO can be read from when the
number of words in it is equal to or greater than the burst level. The
FIFO is ready to be written to when the number of empty slots in it is
equal to or greater than the burst level.

Before accessing the FIFO, the DMA controller should first check that
the SDRQ pin is asserted.

Before accessing the FIFQ, the CPU should either read the FIFO_CNT
bit in the STS Register to determine the FIFO's status or check for a
one on the THR bit in the STS Register.

3. When the external controller accesses the FIFO, the exact number of
transfers (equal to the burst level) must be performed before the
L64702 updates the FIFO_CNT and THR status.

For example, assume you set the burst level to 16 during decompres-
sion or write-through mode. After checking that it is legal to access the
FIFO, perform three writes. At this point, if you try to read the
FIFO_CNT field, the value will be zero. If you write the remaining 13
words into the FIFO and then read the FIFO_CNT, the FIFO_CNT
value should be 16. Note that there is a four-cycle latency after the last
write before the 164702 updates the FIFO_CNT value.

Certain conditions cause the 164702 to update the FIFO_CNT even
though the burst level has not been reached. Some of these conditions
include IMC, RI, and EOI during decompression.

Internal Registers and Data Tables

M 530480y 0011679 710 mLLC

Video Memory The transfer-through feature allows an external CPU to indirectly (via the

Transfer-through L64702) manipulate or evaluate data in the video memory. The L64702

Mode uses the FIFO to hold temporary data coming from or written to the video
memory. Because the L64702 has to take control over the video bus when
transferring the data to or from the video memory, VBRQ and VBACK
arbitrate the operation.

You must first write the address of the TRTH_ADDR_L Register into the
APR with a Group 0 access (SRS[1:0] = 00,). Next, use Group 2 accesses
(SRS[1:0] = 10,) to write the 32-bit video memory starting address into the
TRTH_ADDR_L and TRTH_ADDR_H Register pair.

The ENC bit in the SCR determines whether the L64702 is performing a
read-through or write-through operation in TRTH mode. When ENC = 1,
the L64702 is setup for a read-through operation, and when ENC = 0, the
L64702 is setup for a write-through operation.

Before setting the TRTH bit in the SMR Register; ensure that the FIFO is
empty because the read-through and write-through operations use the
FIFO. Setting TRTH to one initiates the loading of the TRTH_ADDR to a
pointer register. This pointer is used for the video address. With TRTH set,
the L64702 uses Group 3 as a buffer for read-through and write-through
transfers.

For read-through (ENC = 1) operations, the L64702 accesses the video
memory and places the data into the FIFO. Every access on the 32-bit wide
video bus places two 16-bit words in the FIFO. The L64702 writes the
least-significant word first. As the FIFO fills up, the system bus can access
it using CPU or DMA mode as in the normal processing mode. The
L64702 stops accessing the video memory when the FIFO is full or when
the TRTH bit is cleared.

Internal Registers and Data Tables 3-39

B 5304804 0011680 432 EELLC

Figure 3.22 Transfer-through Address Registers Video Memory
Video Memory :
Transfer-Through [TTRTH_ADDR_H, TRTH_ADDR_L] | Video Address Bus
Mode
{ POINTER |
24/ > Image Data
Transfer-Through Data Registers y\
Video Data Bus 32,
7
Y
GROUP 3 FIFO |
16
System Bus

For write-through (ENC = 0) operations, the system must write into the
FIFO using CPU or DM A mode transfers. The L.64702 starts a video mem-
ory write cycle when there are at least two 16-bit words in the FIFO. The
first 16 bits are written into the least significant word position of the VADB
bus. Video memory write-throughs are inactive when the FIFO is empty or
when TRTH is reset.

To reinitialize the pointer register, you must clear the TRTH bit to zero and
then set it to one again.

Write-Through Access

A CPU must perform the following steps in order to accomplish a write-
through of the 164702 to access video memory:

1. Write the memory map address of the TRTH_ADDR_L Register
(0x412) into the APR Register.

2. Set the INIT bit in the SMR.

Write the 16 least-significant bits of the starting pixel address. This
information is automatically sent to the TRTH_ADDR_L Register,
because its address was previously loaded into the APR. The APR
address now automatically increments by one to point to the
TRTH_ADDR_H Register (0x413).

4. Write the eight most-significant bits of the starting pixel address. This
information is automatically sent to the TRTH_ADDR_H Register.

5. Load the APR with the SCR Register address.

3-40 Internal Registers and Data Tables

B 5304804 0011k&1 379 EELLC

6. Write a zero to the ENC bit of the SCR Register to set the transfer-
through direction (write-through).

7. Perform a frame reset to clear the FIFO count. This step is not neces-
sary if the FIFO count is already zero.

8. Set HIGH the TRTH bit in the SMR Register. The L64702 now uses
the FIFO for transfer through.

9. The CPU can now write data to the VRAM through the FIFO using
either the CPU or DMA mode.

Read-Through Access

A CPU must perform the following steps to accomplish a read-through of
the L64702 in order to access video memory:

1. Write the memory map address of the TRTH_ADDR_L Register
(0x412) into the APR Register.
2. Set the INIT bit in the SMR.

3. Write the 16 least-significant bits of the starting pixel address. This
information is automatically sent to the TRTH_ADDR_L Register,
because its address was previously loaded into the APR. The L64702
now automatically increments the APR Register by one to point to the
TRTH_ADDR_H Register (0x413).

4. Write the eight most-significant bits of the starting pixel address. This
information is automatically sent to the TRTH_ADDR_H Register.

Load the APR with the SCR Register address.

6. Write a one to the ENC bit of the SCR Register to set the transfer-
through direction (read-through).

7. Perform a frame reset to clear the FIFO count. This step is not neces-
sary if the FIFO count is already zero. Set SRS[1:0] to 00, (points to
Group 0, APR).

8. Set HIGH the TRTH bit in the SMR Register. The L64702 now uses
the FIFO for transfer-through.

9. The CPU can now read data from the VRAM through the FIFO using
either the CPU or DMA mode.

l Internal Registers and Data Tables 3-41

B 5304804 0011kLA2 205 EMALLC

Chapter 4
System Interface

The L64702 system interface supports two different modes of data trans-
fers: CPU and DMA. Both modes transfer data between the external sys-
tem memory and the L64702 FIFO, internal memory, and registers.

This chapter contains three sections:

m Section 4.1, CPU and DMA Transfer Mode Overview
m Section 4.2, CPU Transfer Mode
B Section 4.3, DMA Transfer Mode

41 The CPU and DMA transfer modes differ in the way the data is transferred
CPU and DMA and in the handshaking method between the 1.64702 and the external CPU
Transfer Mode or external DMA controller. In addition, a CPU may access the Group 0
Overview and Group 1 registers.

The types of data that are transferred are as follows:

16-bit compressed data (from L64702 FIFO to system memory)
16-bit compressed data (from system memory to L64702 FIFO)
Register and table data (from CPU to L64702 internal memory)
Register and table data (from L64702 internal memory to CPU)
Video data (read-through from video memory to CPU)

AN

Video data (write-through from CPU to video memory)

The system interface is designed to communicate with an external CPU or
DMA controller asynchronously (not related to the L64702 clock), using
the input control signals, SRD (system read), SWR (system write), SCS
(system chip select), and SDACK (system DMA acknowledge), and out-
put control signal SDRQ (system DMA request). SINT (system interrupt),
SRD, and SWR are used for both CPU and DMA transfers. SCS (chip

System Interface 4-1

;

B 530480u 0011LLA3 1HL mLLC

select) is used only for CPU transfers, and SDACK (DMA acknowledge)
and SDRQ (DMA request) are used only for DMA transfers. The L64702

system interface functions as a slave to the external system when operating
with either an external CPU or DMA controller.

The 164702 System Mode Register (SMR) contains three control bits
(START, DE, and INIT), which determine which register groups are avail-
able to the external CPU or DMA controller. As described in Chapter 3,
“Internal Registers and Data Tables,” the L64702 is memory mapped into
four groups (0, 1, 2, or 3), which can be selected by either the SRS[1:0]
pins and the SMR control bits START, DE, and INIT when in the CPU
transfer mode, or by the SDRQ and SDACK pins along with the previously
mentioned SMR control bits when in the DMA transfer mode.

Table 4.1 shows the various groups within the L64702 that may be
accessed as determined by the SMR control bits START, DE, and INIT.
The groups are as follows:

m Group 0: L64702 Address Pointer Register (APR)

m Group 1: L64702 System Mode Register (SMR) and
System Status Register (STS)

Group 2: L64702 Registers and Tables
Group 3: L64702 FIFO

Table 4.1
Accessing the L64702
Internal Groups
crPU DMA
Access Access
START DE INIT TRTH Groups Groups Note
0 0 0 1 0, 1,3 - CPU Transfer-through Mode, Group 2 Protected
0 1 0 1 0,1,3 3 DMA Transfer-through Mode
1 0 0 0 0, 1,3 - Processing Operation in CPU Transfer Mode
1 1 0 0 0,13 3 Processing Operation in DMA Transfer Mode
x! 0 1 0 0,1,2 - Initialize Mode, CPU Transfer Mode
X 1 1 0 0,1,2 2 Initialize Mode, DMA Transfer Mode

1. x=don’t care

42

System Interface

B 5304804 0011bAY DAS EMLLC

42 Figure 4.1 shows the control signals that provide the communication
CPU Transfer between the external CPU, external system memory, video memory, and
Mode the L64702. This figure also demonstrates how to configure the system so

that the L64702 exists in the CPU address space.

Figure 4.1
164702 Memory- B‘gg(r)%%sr
Mapped CPU
System Interface ﬂ
cPU L64702 Video Memory

| g
c
|

5 5
22
w|
\ R

| 2
Y
3

_ VDSF >
WR : > A A
SWR Tassf——)
ADD »! SCS

l VTR/OE| >

» SRS]
| »| SRSt VWE >
VDEN >

EOE ADD DB TS

Memory

The CPU communicates with the L64702 for three principal reasons:

To initialize the L64702.

2. To transfer the compressed data stream between the L64702 FIFO and
external memory.

3. To access video memory through the L64702.

In CPU mode, the L64702 supports 16-bit CPU data transfers. The exter-
nal CPU asserts SCS LOW to direct a CPU access (read/write) to the
L64702. This signal can be driven directly from the address lines or from
external system memory mapping address decoding logic. SCS should not
be asserted in the DMA transfer mode. A system memory address decoder
activates the SCS line at the appropriate system memory address.

System Interface 4-3

B 5304804 0011LA5 TIH miLLC

4-4

The 164702 SRD and SWR signals are connected to the CPU read and
write signals, respectively. The SRD and SWR signals activate either a
read or a write cycle, respectively.

The register select lines, SRS[1:0], are connected to the lower CPU
address bits. The external CPU uses SRS[1:0] to access internal memory
and registers. The SRS pins select Groups 0 and 1 during CPU transfers
only—the DMA controller cannot access these groups. A CPU or a DMA
controller can access Groups 2 and 3.

Some L64702 registers are longer than 16 bits. These registers are divided
into two 16-bit words—the least-significant 16 bits and the most-
significant 16 bits. Each 16-bit word resides at a specific address, so that
accessing a 24-bit or 32-bit register requires two 16-bit memory cycles.
When the CPU writes to registers and tables of less than 16 bits, the
L64702 ignores all unused bits. When the CPU reads L64702 registers or
tables, the L64702 sets any unused bits to zero.

The L64702 uses an auto-increment address pointer to address the L64702
internal registers and tables. The auto-increment mechanism provides an
elegant sequential initialization method. The L64702 can access Group 2
resources only when a CPU sets the INIT bit in the SMR Register. For
more detailed information on the auto-increment mechanism, see Chapter
3, “Internal Registers and Data Tables.”

To initialize the L.64702, the CPU first sets the INIT bit in the SMR Reg-
ister. Once this bit is set, the CPU may read and write the L64702 Group 2
tables and registers.

During image compression or decompression, the FIFO buffers com-
pressed data and allows burst data transfers between the external system
memory and the L64702. The FIFO becomes ready to be read from upon
being filled with a number of words equal to or greater than the burst level.
The FIFO can be written after being emptied to a number of words equal
to or more than the burst level.

If the CPU attempts to read the FIFO while empty, or write to it while full,
the integrity of the compressed data stream may be compromised. To avoid
this situation, the CPU keeps track of the FIFO readiness state by properly
setting up the L64702 SMR Register and monitoring the L64702 STS Reg-
ister flags. Use these two registers to enable a hardware interrupt when
changes in the FIFO occur. When an interrupt occurs, the L64702 asserts

System Interface

B 5304804 0011bAL 950 BRLLC

the INT pin LOW. System software must handle changes in the FIFO
readiness in order to avoid data corruption and to avoid compromising
compressed data integrity.

43 The DMA transfer mode is very similar to the CPU transfer mode. The
DMA Transfer L64702 initiates DMA transfer mode when the DE bit in the SMR Register
Mode is set to one. The DMA transfer mode utilizes the capability of an external

DMA controller device (such as an Intel 8237A) to directly transfer data in
one memory cycle between system memory and the L64702. The DMA
controller transfers data between the system memory and the L64702 by
coordinating the read and write signals to both. DMA bus cycles ensure
efficient utilization of the system bus during extensive data transfers
between a peripheral device and the video memory.

A DMA transfer is performed when high utilization of the system bus is
required. DMA transfer cycles allow blocks of data to be transferred
directly between system memory and the L64702 without intervention by
the CPU. The CPU need only set up the DMA controller registers and ini-
tiate the transfer. Better utilization of the system bus results because the
CPU continues to perform internal program cycles while the external bus
is being used for DMA transfers. The resulting parallel computation results
in faster overall operation.

Figure 4.2 shows the interface between a DMA controller, the L64702,
video memory, and system memory.

System Interface 4-5

5304804 00L1LB? 897 MELLC

Figure 4.2
DMA Transfer
Configuration

46

DMA war02 UCAS >
Controller 1OW » SWR VRAS »
TR »{ SRD VDSF >
DROn | SDRQ R J Video
SDACK B R | Memory
DACKn > VTR/OE -
VWE >
EOP | SINT VDEN >
MWR AD MRD SDB
D
T O System
JA Memory
»|WR
MD92.309

The DMA controller only needs four read and write control lines (SRD,
SWR, SDRQ, and SDACK) to simultaneously coordinate data transfers
between the system memory and the L64702.

The L64702 acts as a slave peripheral on the system interface and uses an
external DMA controller to implement DMA transfers. The L64702 allows
DMA operation only with Groups 2 and 3. To initiate DMA transfer ser-
vice, you must set the DE bit (HIGH) in the SMR Register. The SDRQ and
SDACK pins handshake with an external DMA controller. The 1.64702
asserts SDRQ to request DMA transfer service. The DMA controller
asserts SDACK to tell the L64702 that a DMA transfer is in progress.
SDACK performs a function similar to that of the SCS pin in the CPU data
transfer mode. Once the DMA service request has been initiated, any read
or write cycles are valid cycles. As long as SDRQ and SDACK are
asserted, the DMA operation continues.

There are two types of DMA transfers:

1. Group 2 registers and table transfers, where the DE and INIT bits in
the SMR Register are set to one and the START and TRTH bits are
cleared to zero.

System Interface

B@ 5304804 0011b848 723 EELLC

2. Group 3 FIFO transfers, where:

Group 3 FIFO

Operation Mode INIT ENC START TRTH
Read Compression 0 1 1 0
Read Read-through 0 1 1 1
Write Decompression 0 0 1 0
Write Write-through 0 0 0 1

Refer to Chapter 10, “System Interface Port,” for more details regarding
DMA operation and timing parameters.

Initialization of In the initialization phase (DE = 1 and INIT = 1), the CPU initializes the

Group 2 Tables L.64702 tables and registers using DMA to perform Group 2 transfers. The

and Registers L64702 asserts SDRQ and keeps it asserted as long as DE and INIT are set.

Using DMA Unlike the Group 3 DMA burst transfers, there are no restrictions on the
number of words to transfer during a DMA cycle. It is important to remem-
ber that the CPU must initialize the APR Register prior to the DMA trans-
fer just as in the CPU transfer mode, so that access is made to the
appropriate memory location. Also, the APR increments by one on the ris-
ing edge of SRD or SWR to point to the next memory location.

Reading and When data is transferred in a burst to or from the L64702 FIFO, the exact
Writing the number of words as specified in the burst level should be transferred during
Group 3 FIFO each burst interval. The external DMA controller should not activate any
Using DMA additional DMA cycles after deactivation of the SDRQ signal. An

improper DMA burst operation may corrupt the compressed data integrity.

The BURST field, located in the SMR Register, determines the number of
words per transfer. The number of words in a burst can vary from 1 to 32.
Refer to Section 3.5, “Group 3 FIFO,” for more information.

The next two figures show the DMA request signals and protocol. The
basis of the protocol is that the L64702 assumes that SDACK indicates
DMA service to the L64702 I/O port, if the L64702 is in DMA transfer
mode. Additionally, SDACK activity indicates that DMA service is in
progress.

Note that the SDRQ signal is deasserted at the end of the burst count of
words regardless of the internal FIFO condition, and it stays deasserted for
a minimum of four clocks. The L64702 needs this period for internal

System Interface 4-7

B 5304804 0011689 bbT EMLLC

Figure 4.3
DMA Burst Transfer
Timing

Figure 4.4

DMA Burst Transfer
Timing with EOI, RI,
or IMC Condition

48

recovery. SDRQ is deasserted on the falling edge of SRD or SWR corre-
sponding to the last codeword cycle in the burst transfer except during
decompression when either an IMC, RI, or EOI condition occurs.

Figure 4.3 shows how SDRQ is deasserted at the last codeword transfer
within the DMA cycle. In the figure, the number of burst words is 10 and
SDRAQ is deasserted at the beginning of SRD or SWR of the tenth word.

——
e I I I I i T T T T
MD92.304
Figure 4.4 shows how SDRQ is deasserted after the occurrence of an EOI,
RI, or IMC condition during decompression. In this example, the burst
level is 16. Note that SDRQ is deasserted after the rising edge of SWR
when SDB is an EOI, RI, or IMC condition even though the number of
transfers has not reached 16.

1 V3 3 4 5 6 7
s —————— OO0 OO0 06——
V\OXFFDO —0xFFD7,
OxFFDY, or

lllegal Marker

sbRa __ |
SDACK | |

The minimum recovery time between consecutive DMA bursts is four
clocks. The maximum delay time between two bursts is the recovery time
(four clocks) plus the time it takes for the 1L.64702 to process the amount of
words in the FIFO. For example, during decompression assume the burst
level is set to 32. After a burst transfer of 32 codewords into the FIFO, the
L64702 takes four cycles to update the FIFO_CNT. At this point, SDRQ is
deasserted. The 1L.64702 reasserts SDRQ only when the THR condition is
true, in other words, the FIFO is empty.

Figure 4.5 shows that CPU transfers or accesses can be done between
DMA transfers, provided that SCS and SDACK are not asserted at the

System Interface

B 5304804 00L1EY90 381 BALLC

same time. The CPU can access the L.64702 in the pauses between DMA
cycles, provided SDACK is not asserted, regardless of the state of the

SDRQ signal.
Figure 4.5
DMA Transfer 4 CLks
Protocol SDRQ ——l
SDACK ‘
Scs
SRO/SWR aquuuauuuooot: ool gtiiuul
DMA Transfer CPU Transfer DMA Transfer ..
System Interface 4-9

B 5304804 00112691 218 EMALLC

Chapter 5
JPEG Processing Unit

The JPEG Processing Unit (JPU) performs image compression and
decompression and resides between the L64702 system port and the
L64702 video port.

This chapter contains the following sections:

Section 5.1, JPU Overview

Section 5.2, FDCT/IDCT Block

Section 5.3, Quantizer/Inverse Quantizer Block

Section 5.4, Zigzag Conversion

Section 5.5, Differential/Inverse Differential Pulse Code Modulation
Section 5.6, Variable-Length Coding and Decoding (VLC/VLD)

5.1 The JPU communicates with the video port through the MCU buffer and

JPU Overview communicates with the system port through the FIFO buffer. The JPU uses
the system port to read or write compressed data and uses the video port to
read or write uncompressed image data. The MCU buffers image data,
which is organized in an 8 x 8 block order. The FIFO buffers the JPEG
compressed data stream, which is packed into 16-bit words. Figure 5.1
shows the placement of the JPU in the L64702 data path and indicates the
direction of the data during compression or decompression.

Figure 5.1 Decompression Direction =——————3 ~—— [ompression Direction
JPEG Image
Processing
Operations System R JPU -] MU Video

Port Buffer Port

MD92315

On the video port side, the 1.64702 operates as a master device and controls
the image data transfer rate based on the status of the MCU buffer. The

i JPEG Processing Unit 51

—

B 5304304 0011692 154 EELLC

L 64702 operates as a slave peripheral on the system port side. The system
is responsible for controlling the data flow to or from the FIFO. The
L64702 provides an external CPU or DMA controller with on-the-fly sta-
tus information, which helps in determining the FIFO status.

Figure 5.2 shows the main components that comprise the JPU. The same
functional blocks are used for both image compression and decompres-
sion. The L64702 is a half-duplex device, meaning it can perform in only
one processing direction at a time.

Figure 5.2
JPEG Processing
Unit Block Diagram
Decompression Direction —————» ~a———— Compression Direction
Code
oCT
Tables Table
* DPCM/
IDPCM Y
. Variable- to
0 Length Zigzag N FOCT/
FIFO ™1 Coder/ Conversion [Quantization =1 jpct [gﬂ?rgr
Decoder
Run- 'y
Length
Coding
Quantization
Tables
When the START bit in the L64702 SMR Register is set, the 1.64702 enters
the processing phase, where it performs image compression or decompres-
sion. The ENC bit in the SMR Register determines the processing direc-
tion. If ENC is set, the L64702 encodes (compresses) image data; if ENC
is reset, the L64702 decodes (decompresses) image data.
During the processing phase, the JPU may momentarily suspend opera-
tion, depending on the full or empty status of the MCU or FIFO buffers.
The L64702 performs the suspension automatically, without external sys-
tem intervention. To force the L64702 to suspend operation, an external
52 JPEG Processing Unit

B 5304404 0011693 090 EELLC

CPU can reset the START bit. Once the CPU sets the START bit back to a
one, the L64702 resumes operation from its last state.

While operation is suspended by the external system, a CPU can read from
and write to the internal memory-mapped resources. The L64702 assumes
that any write operations to Group 2 are attempts to change the configura-
tion parameters. At this point it is likely that the internal data stream is cor-
rupted, and the L64702 must be reset and operation must commence from
the beginning.

5.2 The FDCT/IDCT (Forward Discrete Cosine Transform/Inverse Discrete

FDCT/IDCT Block Cosine Transform) block transforms image data between the time domain
and the frequency domain. In video compression, the FDCT function is
implemented first, followed by quantization. In video decompression,
inverse quantization occurs first, followed by the IDCT function.

During compression, the image data is transferred from the MCU buffer to
the JPU FDCT block and is assumed to be an 8 x 8 block of eight-bit,
signed (-128 to 127) data values. The FDCT operation transforms each

8 x 8 block and yields a set of 11-bit, signed values (-1024 to 1023) known
as DCT coefficients. One of these values is the DC coefficient, and the
other 63 values are the AC coefficients.

Equation 5.1 and Equation 5.2 show the mathematical equations for the
FDCT and IDCT transforms performed by the 1.64702.

Equation 5.1 7007
. 2x+ 1N u 2y+1)v
Forward Discrete =1 z Z os) T s BYYDVE (FDCT)
. 3¢ 16
Cosine Transforms =0 y=0
Equation 5.2 1 L (2x+un Qy+Dvn
Inverse Discrete =3 2 2 CuCuFy, cos———r— cos—— z (IDCT)
Cosine Transforms u=0 v=0
where:
Cu,Cv = ,/Li for u,v =0 Cu, Cv = 1 otherwise
JPEG Processing Unit 53

B 5304804 0011694 T27 EELLC

Equation 5.3
First Step in
Calculation

Equation 5.4
Second Step in
Calculation

54

The L64702 contains a table of 64 DCT values, which specify the 12-bit,
signed FDCT or IDCT factors to be used in implementing Equation 5.1
and Equation 5.2. Figure 5.3 shows the FDCT and IDCT tables.

Each table shown in Figure 5.3 contains 64 default factors. The tables cor-
respond to the 8 x 8 raster ordered data as follows. The first eight entries
(1 through 8) correspond to the top row of the 8 x 8 block, reading from
left to right. The next eight entries in the table (9 through 16) correspond
to the second row from the top of the 8 x 8 block, and so on. The FDCT or
IDCT transform operates on the data byte found in a particular location in
any 8 x 8 data block, depending on the processing direction, using the fac-
tor that corresponds to the location of the data byte in the 8 x 8 block.

You can load custom FDCT and IDCT factors to modify the transform
according to the particular application.

The 164702 calculates the DCT or IDCT coefficients in two separate
matrix operations as shown in Equation 5.3 and Equation 5.4, as follows:

[¥] = [a]e[x]

[v] = [a]e[Y]
where:

[A] s the 8 x 8 DCT or IDCT matrix.

[X] is the 8 x 8 input data matrix to the FDCT/IDCT L64702 block.
[Y] is the result of the first operation.

[Y] is the final resulit.

JPEG Processing Unit

B 5304804 0011b95 963 MELLC

Figure 5.3
FDCT and IDCT -
Factors 1 1 1 1 1 1 1 1]
N/ SN/ SN SN SN) J2 S22~
n 3n Sn r i S 3n 4
cos i cos % cos T cos % cos T cos I3 cos % cos T3
2n 6n 10% 147 147 10n 61 2n
COS— COS— — —— COS — — cos— —
6 16 16 176 “17 6 6 6
3n 9r 15z 21n 2ln 157 o 3n
COSTG' cos-l-g cosF cosF cosW _Cos_lé_ --cosTg cosﬁ FOCT Factors
4n 12n 20m 28n 287 20w 12n 4n
cos16 cos16 0 T cos16 cos T cos16 cos16 s:os16
5 15% 25r 357 35w 257 157 Sn
— COS— CO0S—— COS—— —C0S—— —CO0S§ —— —COS —— —COS —
R TR THR A TR T T T S TR
67 18n 30n 2n °2n 30w 187 6mn
cos16 cos T cos T 08 T 0s T cos T3 cos T cos16
ki 21n 35n 491 497 35n 21n Vi1
cosﬁ cosﬁ cosl—6 cosT‘; cosF cosW cosF COSTE
i 1 T 2n 3n 4n b}, 61 n
— cos— — COS— COS— — — cos—
5 T 6 s 1% T 16
1 3n 6m 9n 12n 15 187 21w
R — —_ —— CO0§ —— (0S8 — PR,
ﬁ cos T cos T cos T cos T 0s g 0s T cos 6
1 Sm 10w 15 20m 251 30x 35n
— COS— CO0S—— CO§S—— COS—— COS—— COS—— COS——
ﬁ 6 6 16 16 16 16 16
1 T 14n 21x 28n 35n 27 497
—_ — cos— ¢ COS — COS —— —_ —_—
ﬁ cos16 os16 0516 0516 0516 cos16 cos16
IDCT Factors
1 i l4n 2in 28w ISn 2rn 497
R — —_— - _— —_— - —_ 0§ —— — —_—
ﬁ cos T cos T cos T cos T cos g 0s T cos T
1 10x 151 207 25m 30n 35n
e —CO§ — COS —— —CO0S —— COS —— —CO0S —— COS ——— ~COS —
ﬁ 16 16 16 16 16 6 6
1 3n 9n 12n 157 18w 21n
— —cos COS— —COS— COS—— —COS——- COS§ —— —COS ——
VARG 6 A TR TR T: 16
1 2n 3n 4n 5n 6n =
— —C0S-—— COS=— —COS— COS— —COS— — —CO§ —
5 P16 “Ts 6 16 6 1 T
JPEG Processing Unit 55

B 5304804 00LLe9L &TT MELLC

5.3
Quantizer/

Inverse Quantizer
Block

Equation 5.5
Quantization and
Inverse Quantization

56

During compression, the FCDT operation is followed by the quantizer
function. The quantizer block quantizes each of the 64 DCT coefficients
resulting from the transform performed by the FDCT operation. During
decompression, the dequantizer function is first, followed by the IDCT
function. The dequantizer recreates the 64 DCT coefficients, which are
then operated on by the IDCT transform.

The quantization table contains the corresponding quantization step size
for each coefficient. The step size is designated by Q,,. A single quantiza-
tion table is used for both quantization and inverse quantization.The first
formula of Equation 5.5 is for quantization; the second formula for inverse
quantization.

The L.64702 contains four user-programmable quantization tables (QTO
through QT3). Each 8 x 8 FDCT block can be quantized with one of the
four tables. The Q3 through QO fields in the JCR Register select the quan-
tization tables for each block. Refer to Chapter 3, “Internal Registers and
Data Tables,” for more information on the quantization tables and the JCR
Register.

Equation 5.5 shows the functions implemented during quantization and
inverse quantization. The upper equation shows that the FDCT results,
F,u, are divided by the corresponding quantization factor Q,,, and
rounded to the nearest value. This operation, by definition, is lossy. The
lower equation shows the inverse quantization operation, Quantized FDCT
values, FQ, ,, are multiplied by the corresponding quantization factor Q, .
R, is not equivalent to F, , because of arithmetic loss incurred during
quantization.

Figure 5.4 shows two quantization tables (one for luminance data, one for
chrominance data) taken from the JPEG standard draft. While you can load
any values into the quantization tables, these standard quantization tables
are recommended to accomplish a 24:1 compression ratio for typical
images.

JPEG Processing Unit

B 5304804 0011697 736 MELLC

Figure 5.4
Luminance and
Chrominance
Quantization Tables

1611 [10]|16]24] 40| 51| 61 17118124)47 |99 |99)99 |9
12112 14| 19| 26 | 58 | 60 | 55 1121 |26 |66 |99} 99|99
14 [13|16 | 24| 40 | 57 | 69 | 56 241 2615699 |99]9]9 |9
14117 2|29 |51 |87 | 80|62 47 | 66 [991999999]9]9
18§22 (37 |5 |68 (109|103} 77 99 [99 {99 199 |99 |99 99|99
24 | 35 | 65 | 64 8 |104)113] 92 99 99 (99 | 99 |99 |99 |99 99
43 164 | 78 | 87 | 103|121 | 1201 100 99 199 [99|99 9999|9199
72192 95)98 |112]100]103] 99 99 {99 199 99|99 |99]99] 9

Luminance

Chrominance

MD3z317

5.4
Zigzag
Conversion

Figure 5.5

Zigzag Sequence of
Quantized DCT
Coefficients

The zigzag conversion block converts quantized AC coefficients from ras-
ter order to zigzag order in the compression direction, and from zigzag

order to raster order in the decompression direction. Zigzag ordering

places the AC coefficients in ascending frequency order, which substan-
tially improves coding efficiency. In practice, long runs of zeroes are pro-
duced, which are coded very efficiently using the Huffman coding
technique. Figure 5.5 shows the zigzag conversion table. The quantized
DC coefficient (location O in the array) is treated separately. All the other

locations are AC coefficients.

JPEG Processing Unit

57

B 5304804 0011k98 b72 EELLC

55

Differential/
Inverse
Differential Pulse
Code Modulation

Equation 5.6
DC Difference

Equation 5.7
OC Term
Reconstruction

The Differential and Inverse Differential Pulse Code Modulation
(DPCM/IDPCM) block decodes DC coefficients during decompression
and codes DC coefficients during compression. Quantized DC coefficients
are processed differently from the 63 AC coefficients. A differential pulse
code modulation scheme is used in place of zigzag coding. The DC term
of each 8 x 8 block is subtracted from the DC term of the previous block
for that color component. The 1L.64702 contains four DC predictors to hold
the temporary differences for each of the color components. The DC pre-
dictors are reset at the beginning of operation or upon detection of a restart
marker code during decompression.

Equation 5.6 is implemented during compression; Equation 5.7 is imple-
mented during decompression. PR; represents the DC predictor and DC;
represents the quantized DC term.

A DC; = DC;-PR;_,
PR, = DC; PR_ =0

DC = A DC;+PR;_,
PR, = DC; PR_ =0

5.6
Variable-Length
Coding and
Decoding (VLC/
VLD)

58

The Variable-Length Coder (VLC) generates variable codewords to be
placed in the FIFO from the quantized DCT coefficients. The Variable-
Length Decoder (VLD) produces quantized DCT coefficients from code-
words found in the FIFO. The VLC process assigns the shortest codewords
to those events that statistically have been determined to occur most fre-
quently, so maximum compression is accomplished for the image data type
to be processed. This process is known as entropy encoding.

The 164702 contains four internal Huffman code tables: two DC Code
Tables (0 and 1), and two AC Code Tables (0 and 1). The entire code table
must be written at one time in order to ensure proper operation. The num-
ber of words per table is defined in Chapter 3, “Internal Registers and Data
Tables.”

The code-table data format has been optimized for coding efficiency and
differs from the JPEG interchange data format. LSI Logic supplies code-
table formatting software that reformats JPEG-formatted code tables into
L64702-compatible format.

JPEG Processing Unit

B 5304404 0011699 509 MELLC

Chapter 6
Compressed Image Data
Structure

This chapter describes the data file structure for both compressed and
decompressed images. The 1L.64702 supports image compression or
decompression from the scan level, as specified in the proposed JPEG stan-
dard CD 10918-1 (baseline only), with one exception—the L64702 does
not process the scan header information. In general, the L64702 does not
process any header information specified in the JPEG standard. The
L64702 assumes that a general-purpose CPU processes the header
information.

The L64702 is responsible for the computational intensive task of image
encoding or decoding. The L64702 supports byte stuffing during compres-
sion and byte stripping during decompression. Insertion of the EOI marker
is also supported. In addition, the Restart and End of Image (EOI) marker
codes are supported during decompression.

This chapter describes the following JPEG data file structures:

®m Section 6.1, JPEG Interchange Format
m Section 6.2, Compressed Data Segments

m Section 6.3, Decompression Code Data Structure

6.1 Figure 6.1 shows the JPEG interchange format layers. The top level
JPEG defines the compressed image structure, starting with the start of image
Interchange (SOI) marker, followed by the frame data, and ending with the end of
Format image (EOI) marker.

Compressed Image Data Structure 6-1

B 5304804 0011700 050 MELLC

Figure 6.1 Compressed Image Data
JPEG Baseline
Interchange Format S0 _ Frame - 0!
Syntax et e
] FrameData Tt
[Tables/Misc.] | Frame Header| Scan, Selgnt;g-nt] [Scany) [Scany,g)
--------------- Scan Data
[Tables/Misc.] R8T,

Entropy-Coded Segment

Shaded Areas are Supported by the L64702

Frame Data

The second level of Figure 6.1 shows the frame data format. Frame data
begins with a frame header and contains one or more scan fields. A frame
header may be preceded by one or more table specification or miscella-
neous marker segments. If a Define Number of Lines (DNL) marker is
present, it immediately follows the first scan. Each scan contains from one
to four image components. If two to four image components are contained
in a scan, they are interleaved within the scan.

Scan Data

The scan field begins with a scan header and contains one or more entropy-
encoded segments (ECS). Each scan header may be preceded by one or
more table-specification or miscellaneous marker segments. If restart is not
enabled, there is only one entropy-encoded segment (labeled last), and no
restart markers (RST) are present. If restart is enabled, the number of
entropy-coded segments is defined by the size of the image and the defined
restart interval. In this case, a restart marker follows each ECS except the
last one.

Entropy-Coded
Segment (ECS)

62

Each ECS is comprised of a sequence of entropy-encoded MCUs. The
VLC process mentioned in Chapter 5, “JPEG Processing Unit,” assigns the
shortest codewords to those events that statistically have been determined

Compressed Image Data Structure

B 5304804 0011701 T97 EELLC

to occur most frequently, so maximum compression is accomplished for
the image data type to be processed. This process is known as entropy
encoding. If restart is enabled and restart is defined to be R;, each entropy-
encoded segment except the last one contains R; MCUs. The last ECS con-
tains whatever number of MCUs completes the scan.

6.2 The L64702 compressed data segment containing the entropy-encoded
CompressedData output data from the variable-length coder is stored in the FIFO. Data are
Segments packed into 16-bit words in the FIFO. Because the code segment may end

on an arbitrary bit within the 16-bit word, the 1.64702 fills the last 16-bit
word of the code segment with ones. Any JPEG-compatible information
tailored to a specific application can be appended to the code segment.

When compressing an image, the L64702 produces a JPEG compressed
file that consists of pure JPEG entropy-coded words. The L64702 does not
insert any restart or other markers during compression except the EQI
marker, provided the EOI bit is set in the SCR Register.

The JPEG standard requires that an OxFF byte precede the marker codes to
denote their presence within the coded bit stream. A valid marker code is
one that follows an OxFF but is not equal to OxFF or 0x00. Therefore an
OxFF that is naturally created during compression must be followed by a
0x00. This scheme allows a naturally occurring OxFF in the coded bit
stream to be distinguished from a marker code following an OxFF. The
L64702 process of inserting a 0x00 byte after a naturally occurring OxFF
byte is known as byte stuffing.

Figure 6.2 shows four examples of code data streams created by the
L64702. The “0” and “1” represent the least-significant and most-
significant bytes, respectively, of the 16-bit FIFO words. Cn represents the
code data words that the L64702 created during compression. The 0x00
bytes that follow the OxFF bytes represent those bytes that the L64702 has
byte stuffed.

Additionally, the JPEG standard specifies that any marker may optionally
be preceded by any number of fill bytes, which are bytes assigned to the

value OxFF.

The MSB of a byte (bit 7) is the first bit of the compressed data stream for
any particular byte.

Compressed Image Data Structure 6-3

M 5304804 0011702 923 MALLC

Figure 6.2
L64702-created
Code Data Streams
o |’ co 0 Co 0 co 0 co
1% ¢ 8 1 c1 1 c1 1 c1
0 c2 0 c2 0 (W} 0 c2
1 3 1 c3 1 c3 1 c3
FF 8 FF FF 5 FF
yte yte
00 y Stuffing ’ 00 to y Stuffing 3 00
FF FF FF FF
< Byte » Byte
w Stu¥fting ® 00 Stuffing ! 00
0 0 0 Cn 0 FF Cn
1 Cn 1 FF Cn 1 FF 00
FF 00 FF FF
D9 FF D9 D9
FF
D9
{a) {b} {c) {d)

6-4 Compressed Image Data Structure

5304804 0011703 8LT EELLC

Figure 6.2a is an example of a code data stream that ended on a bit in the
least-significant byte.

Figure 6.2b is an example of a code data stream that ended on a bit in the
least-significant byte originally or as a result of padding ones. A naturally
occurring O0xFF was created in the code data stream. As a result, a 0x00
was appended by byte stuffing. In order to end the data stream on the 16-bit
boundary, a OxFF was appended to the 0x00.

If padding with ones creates a OxEF, a 0x00 byte is inserted as described
above. The L64702 may pad the last byte with ones if the total code seg-
ment, including the stuffed zeroes that follow a naturally occurring OxFF,
does not end on a 16-bit word boundary.

Figure 6.2c is an example of a code data stream that ended on a bit in the
most-significant byte. A OxFF was appended to fill data to the 16-bit
boundary.

Figure 6.2d is an example of a code data stream that ended on a bit in the
most-significant byte originally or as a result of padding ones. A OxFF was
created in the code data stream and a 0x00 was appended. Because the
code data ends on a 16-bit boundary, additional bytes are not appended.

6.3 When The L64702 decompresses an image, the data supplied to it must
Decompression conform to the JPEG baseline standard (CD 10918-1). An external CPU
Code Data must remove all header information from the code data stream before writ-
Structure ing it into the FIFO.

The L64702 decompresses code segments that may contain restart marker
codes (RSTp,). An RST marker code consists of a OxFF followed by a byte
in the range 0xDO through 0xD7. The L64702 also decompresses code seg-
ments that contain an end of image marker code (EOI). The EOI marker
code consists of a OxFF followed by a 0xD9.

During decompression, if a 0x00 is detected following a OXFF, the L64702
decoder ignores the 0x00 byte and processes the OxFF byte as a legal code
byte. This process is known as byte stripping. If the byte following a OxFF
is non-zero, then this byte is assumed to be a marker code and is processed
as described in the following subsections.

Compressed Image Data Structure 6-5

BN 5304404 0013704 7Th EELLC

Reset Marker If the L64702 detects a restart marker code (OxFF followed by

Code (RST) 0xDO0 - 0xD7) during decompression, the entire 16-bit word is ignored.
The L64702 notifies the external system that it has detected a RST marker
by asserting the RI bit in the STS Register. An interrupt may be generated
if the corresponding bit in the SMR is unmasked.

If the L64702 is in a DMA transfer cycle when the RST marker is detected,

it deasserts SDRQ on the rising edge of SCS or SWR and enters its internal

reset sequence. At the end of the reset sequence, it resets the four DC pre-
dictors that temporarily maintain the differences between DC coefficients

of sequential 8 x 8 data blocks and becomes ready to continue decoding the
next segment of the image. If in DMA transfer mode the L.64702 sets

SDRQ.
End of Image The EOI marker (OxFFE, 0xD9) is inserted at the end of the compressed
Marker Code data. If the 1L64702 detects an EOI marker code, it assumes that the end of
(EOI) an image has been reached. The 1.64702 decoder ignores the EOI marker

code and asserts the EOI flag in the STS Register to notify the external sys-
tem. An interrupt may be generated if the corresponding bit in the SMR is
unmasked.

With EOI flagged, the L64702 ignores any write attempts by the CPU or
DMA controller. An end of active window (EQA) condition is reached
after the preceding code data has been decoded and the reconstructed
image data transferred. Only the EOA flag is set. If the defined active
image is outside the compressed image, the EOA condition does not

appear.

To restart operation, you should initiate a frame reset, then set the START
bit again. If DMA service is required the DE bit should be set.

Other Marker The L64702 decoder ignores any other marker codes and, upon detection,

Codes asserts the illegal marker code (IMC) bit in the STS Register to notify the
external system. The L64702 generates an interrupt if the corresponding
bit in the SMR is not masked. The user must perform a frame reset in order
to restart operation.

Figure 6.3 shows compressed file structures supplied to the L64702. The
compressed data must be word-aligned on 16-bit boundaries.

6-6 Compressed Image Data Structure

EN 5304804 0011705 L3e EALLC

Byte O represents the least-significant half of the 16-bit word, and byte 1
represents the most-significant half. In Figure 6.3a, the code dataend on a
word boundary. If the code data end on a byte boundary instead of a word
boundary (Figure 6.3b), then a dummy byte (0xXX) must be inserted
before the compressed data of the next image.

Figure 6.3 5 o n —
Compressed Data
Structures Supplied t 1 o
to L64702 B —,
i FF
RST
DO D0
FF FF
00 00
i FF
00 00
i FE
RST
D1 D1
0 0 Cn
! Cn 1 FF
0
i EO! 0 D9 EOI
1 b9 1 XX Extra Byte
(@ (o
Compressed Image Data Structure 57

B3 5304804 0011706 579 E®LLC

Chapter 7
Video Memory Organization

This chapter describes the organization of image data in external video
memory used in conjunction with the L64702 and the associated video bus
addressing scheme.

This chapter contains six sections:

Section 7.1, Video Memory Address Space
Section 7.2, Raster-to-Block Conversion
Section 7.3, Color Memory Organization
Section 7.4, Image Subsampling

Section 7.5, Scrolling in Compressed Files

Section 7.6, Active Window and Two-Dimensional Addressing

11 In every video memory access (read or write), the L64702 transfers a com-

Video Memory plete 32-bit word between the external video memory and the internal

Address Space MCU buffer. The 32-bit 164702 video bus is multiplexed between address
and data. Twenty-four address bits directly access up to 64 Mbytes or 16M,
32-bit words.

Figure 7.1 shows the L64702 logical memory address space. Each word is
32 bits wide. Address values, N, range between 0x00_0000 and
OxFF_FFFF.

Video Memory Organization 7-1

B 5304804 D0LL707 405 EELLC

Figure 7.1
Logical Memory
Address Space

Figure 7.2
Physical Memory
Organization

72

j——— 24-hit Logical Address ———»]

N
Y
Word Word Word Word Word
N+1 N N-1 1 0
Note:
1. All words are 32 bits wide. MD92322

Figure 7.2 shows the physical memory mapping of video memory. Within
the 24-bit address space of the L64702, video memory can be partitioned
into several memory banks that can be used for different tasks. The 1.64702
may share the video memory with a graphics or DSP processor, which uses
the video memory to store machine code and hold temporary data. In addi-
tion, display memory, defined as on-screen memory, can be used for image
display. The programmability of the L64702 provides the flexibility of
switching tasks in the memory address space.

When you initialize the L64702, you may configure the video control reg-
isters. These registers determine the start address of the active window
area, the active window dimensions, the display pitch, and other video con-
trol functions. Refer to Chapter 3, “Internal Registers and Data Tables,” for
more details on the video control registers.

OXFF_FFFF —————p>

Start of Active Window ———— On-screen Memory 2

Start Video 2 >

Graphic Processor Code

Start of Active Window = On-screen Memory 1

Start Video 1 »

0Off-screen Memory

0x00_0000 MDs2.323

Video Memory Organization

5304804 0011708 341 EALLC

1.2 Raster-to-block conversion is a special-purpose operation, which is asso-
Raster-to-Block ciated with the JPEG compression algorithm. JPEG compression is per-
Conversion formed in such a way that pixels must be organized in 8 x 8 two-

dimensional tiles. If the image exists initially in raster order, the front-end
video interface unit should convert from raster order to block order. The
L64702 integrates the raster-to-block conversion in its video address unit.
This integration changes the definition of AW and AH from simple
straightforward Active Width and Active Height parameters to a video
organization in terms of Minimum Code Units (MCUs) in the horizontal
and vertical directions.

An MCU is typically a two-dimensional area of image data containing

8 x 8 blocks for processing by the JPEG unit. The term minimum in MCU
means that this MCU contains the smallest video structure for a particular
sampling ratio, and that the entire image is constructed from an array of
these MCUs.

The video address unit also notes when the actual image boundary does not
correspond to an integral number of MCUs. If this is the case, the L64702
complements the image area with zeros in the compression direction. In

the decompression direction, the area outside the active image area is not

overwritten.
13 This section describes the four different methods the L64702 uses to access
Color Memory color image data structures, These methods are listed below:
Organization)

m Multisource

® Unpacked

m Packed

m Components sequential

The IDS field in the SCR Register determines which data structure is
accessed. Table 7.1 shows the encoding of the IDS field.

Video Memory Organization 7-3

BN 5304804 0011709 285 MELLC

Table 7.1
IDS Field Encoding

IDS Data Structure

00! Multisource Color Image

01! Unpacked Color Image

10! Packed Color Image

11 Components Sequential Color Image

2:1:1 can be used.

Each of the following four subsections provides a two-dimensional mem-
ory organization, describes the color addressing scheme, and describes the
video bus activity for each data structure.

Multisource
Color Memory
Organization

74

Multisource color image data structures are accessed when the IDS field
equals zero. In this configuration, the 1.64702 accesses three color compo-
nents (RGB) from three separate memory regions. Each region is recon-
structed from an array of pixels that are packed into a group of four pixels
per address location. The total region size (in pixels) per color component
is determined by multiplying the display pitch by the number of display
lines allocated for the color component. The display pitch is specified per
color component in the three display pitch registers: DP_0, DP_1, and
DP_2. The active window region is the specified area of operation within
the color region and is specified by three parameters: start address (SA_O,
SA_I, and SA_2), Active Width (AW), and Active Height (AH).

Figure 7.3 shows the two-dimensional memory organization of an RGB
multisource color image data structure. The figure is representative of an
image that consists of data in three separate video memory regions accord-
ing to color. The data in each region are organized as blocks eight bytes
wide by eight lines high.

Video Memory Organization

5304804 D0OL1710 TTT EALLC

Figure 7.3
Muitisource Color
Memory
Organization

SAD

e 4 e o

¢ o @ -0

ROR1R2ZR3R4R5RE R
R8 R3R19R11 R1ZR13R14R15

o & 0. & & ° 9 0 s 8 o0

* o 4

o % 8

o 4. o o

3

*

-

L

¢ o

1

RE0 R62 R63

SA_1

® o o ®

G0 G1 G2 G3 G4 G5 G6 G7
G8G9G19G11 G12613G14G1b

. 0 6 ¢ @ & % S 0 0 0

* o & & 3

* o

e 09 8 o s
o ¢ & 5 0 0 0
3

G60 G61 G62 G63

*

L
.

L]

® 9 & 0 9 s s 0 @& 0

L

B0 B1 B2 B3 B4 B5 B6 B7
B8 BIB13B11 B12B13B14B15

e ® 0 8 8 6 0 0 8 0 20

.
. & & O & 00
L]

« e 0 o 0 00

B6C B61 B62 B63

7] MD92325

As mentioned previously, the video bus address generator performs the
raster-to-block and/or block-to-raster operations when transferring data
from video memory to the L64702 or from the L64702 to video memory,
respectively. Image data are transferred to or from the L64702 in 8 x 8
block order. The address generated for video memory is such that it is pre-
sented to a display device in raster order.

Every video memory cycle involves 32-bit transfers per cycle (four pix-

els). Therefore every active window parameter must be an integer multiple
of four (4, 8, 12, 16, etc.). The starting address must also be aligned with a
32-bit boundary. You must specify the proper values in the starting address

Video Memory Organization 75

B 5304404 0011711 93b EELLC

Figure 7.4
Multisource Color
Video Bus Activity

7-6

registers as well as the width and height registers to prevent any overrides.
Any mix of data between color regions results in image data corruption.

The addressing scheme implemented for this mode consists of two 32-bit
memory transfer cycles for each color, which results in the transfer of eight
pixels of each color component from consecutive addresses within that
color’s region. The bus cycles are interleaved as shown in Figure 7 4.

32-bit

Bus Cycle 31 % B 16 15 8 7 0
0 R3 R2 Ri RO
1 63 G2 G1 60
2 B3 B2 Bl B0
3 R7 R6 RS R4
4 67 G6 G5 G4
5 B7 B6 BS B4
6 R R10 R9 RS
7 Gl G10 69 G8
8 BT B10 B9 B8
9 R15 R14 R13 R12
10 G15 G14 G13 G12
n BI5 B4 B13 B12
12 R19 R18 R17 R16
13 619 618 G17 616
14 B19 B18 B17 BI6
15 R23 R22 R21 R20

The first bus cycle transfers 32 bits of R; the second, 32 bits of G; the third,
32 bits of B. After two memory cycles have executed for each color com-
ponent, eight complete pixels have been transferred for the three color
components. The video bus address generator then skips to an address for
the next R color component, which is the starting address plus the amount
specified in the display pitch register. The new address points to the start-
ing pixel for a particular 8 x 8 block on the next display line.

At this point, eight more pixels are transferred, and again, the video bus
address generator skips ahead to point to the starting pixel for the block on
a new line. Sets of eight pixels are transferred until an 8 x 8 block (64 pix-
els) transfer is complete. This operation is performed in an interleaved
manner for all three color regions, as shown in Figure 7.4. The operation
continues until all the 8 x 8 blocks are transferred in the order shown in
Figure 7.3.

Video Memory Organization

B 5304804 00LL7L2 872 EELLC

As shown in Figure 7.4, six memory cycles of 32 bits are required to trans-
fer eight pixel components of a particular color. The value of the first com-
plete pixel (RO, GO, BO) is contained in bits [7:0], the second (R1, G1, B1)
in bits [15:8], the third (R2, G2, B2) in bits [23:16], and the fourth (R3, G3,
B3) in bits [31:24]. This same process continues for pixels five through
eight.

Figure 7.5 shows the raster-to-block addressing scheme as implemented to
support the multisource color image data structure.

Figure 7.5

Muitisource Color

Addressing Scheme
3= DP_0)

SA_0 |RORIR2R3 T I — R8 R R10 R11 [R12 R13R14 R15
> DP_1 >

SA_1 |G0G1 G263 T T (68 G 610 G11 |G12 613 614 G15

SA_2 |B0B1B2B3 BAB5BGBT | e B8 B9 B10B11 [B12B13B14B15

8x 8 Block 8 x 8 Block 8x 8 Block

ROR1 R2 R3 R4 A5 R6 R7
R8RIRI0............

G0 G1 G2 G3G4 G5 G6 G7
G8GIGI0............

BOB1B2B3 B4 B5B6 B7
B8BIBIO.............

MD92327

Image data are transferred in 32-bit words (four pixels) per memory cycle.
Because the 164702 can execute video bus cycles faster than it can per-
form color space conversion on the image data, from time to time it must
halt bus cycles in order to do conversions. Therefore on average, the
L64702 transfers a word from a color region every other cycle.

Figure 7.6 is a three-dimensional representation of the display image in
video memory. Complete three-color pixels are generated by accessing a
Video Memory Organization 77

M 5304404 0011713 709 ERLLC

32-bit word from each color region of memory. Each access to a particular
color region yields four values of the same color that are part of four dis-
tinct pixels. After two accesses to each color region, enough information
is available to create one of the layers of the three-dimensional 8 x 8 block
depicted in the figure. The subsequent two accesses to each region result
in another layer that belongs to the next display line.

Figure 7.6 L 32 Bits | 32 Bits |
Three-dimensional l‘ N 1
8 x 8 Multisource /8B/B/8 /B /B /B /B /B /le—DpislayLine#
Display Image [6/6/6 /6 /6 /6 /G /6 e Display Line #2
_/R/R/ R/ R R/ R/ R R
Yol 1 23| 4|56 |7
gl | 1n]12]113]14]1s
8
Lines
y // // // // // /// L Display Line #7
le——— Display Line #8
Ll /L [L L
y | 56| 57) 58 | 59 | 60 | 61 | 62 | 63
leg {
| g
8 Bytes MDIZ330
Unpacked Color ~ Unpacked color image data structures are accessed when the IDS field is
Memory set to one. Three color components are assumed to be interleaved and to

Organization

7-8

reside in the same memory region. Because each color pixel is comprised
of three eight-bit components, pixel data are right-justified to the 24 least-
significant bits (bits 0 to 23) of a 32-bit word. The eight most-significant
bits (bits 24 to 31) are ignored in this configuration and are designated by
6‘X.9!

Figure 7.7 shows the two-dimensional memory organization of an
unpacked image data structure. The figure is representative of a image that
consists of data in video memory organized as blocks eight bytes wide by
eight bytes high.

Video Memory Organization

B 5304804 0011714 L45 MELLC

Figure 7.7
Unpacked Color
Memory
Organization

SAD

RGBX0 RGBX1 ¢ ¢ « RGBX7
RGBX8 RGBX9 ¢ * ¢ RGBX15

® & o o o 8 ¢ b ¢ & O
® & & & 5 5 " B ¢ 0 0

0 5 8 & o e 0 0 0 s

® & 5 8 0 6 5 00 s 00

» + » » « RGBX62 RGBX63

MD32.330

Data are transferred to and from the L64702 in this 8 x 8 block format. The
highlighted block indicates the active window structure. The starting
address of the active window is in the SA_Q Register, the active window
width is in the W Register, and the active window height is in the H Reg-
ister. The total region size (in pixels) is calculated by multiplying the spec-
ified display pitch by the number of display lines that are allocated for the
display area. The display pitch is contained in the DP_0 Register.

The video bus address generator performs the raster-to-block and block-to-
raster translation. Image data are transferred to or from the L64702in 8 x 8
block order. The final placement of the data in video memory is such that
it is presented to a display device in raster order.

Every video memory cycle involves 32-bit transfers, which, in this case,
are equivalent to one complete pixel transfer containing an 8-bit value for
each of three color components. This type of image must be entirely rep-
resented using complete 32-bit words. The starting address must also fall
on a 32-bit boundary. The active window width and display pitch can be
any 12-bit integer number. The display pitch must be greater than or equal
to the value specified by the width.

Video Memory Organization 79

B 5304804 0011715 581 EMLLC

Figure 7.8
Unpacked Color
Video Bus Activity

7-10

Figure 7.8 shows the video bus activity for the unpacked color image data
structure.

32-bit

Bus Cycle 31 2 23 16 15 8 7 0
0 X BO G0 RO
1 X B G1 R1
2 X B2 G2 R2
3 X B3 63 R3
4 X B4 G4 R4
5 X B5 G5 RS
6 X B6 G6 RB
7 X B7 G7 R7
8 X B8 G8 R8
9 X B9 G9 R9
10 X B10 G10 R10

The addressing scheme implemented for this mode consists of eight con-
secutive memory transfer cycles, each of which transfers one complete
pixel. Each pixel consists of three eight-bit color values, one for each color
component. The video bus address generator then skips to an address that
is the starting address plus the amount specified in the display pitch regis-
ter, which points to the starting pixel for a particular 8 x 8 block on the next
display line. At this point, eight more pixels are transferred, and again, the
video bus address generator skips ahead to point to the starting pixel for
the block on a new line. Sets of eight pixels are transferred until an 8 x 8
block (64 pixels) transfer is complete.

As shown in Figure 7.8, eight memory cycles are required to transfer eight
complete pixels. The first complete pixel (RO, GO, B0, X) is contained in
the first complete 32-bit word, the second pixel (R1, G1, B1, X) in the sec-
ond 32-bit word, and so on.

Figure 7.9 shows the raster-to-block addressing scheme as implemented to
support the unpacked color image data structure.

Video Memory Organization

B 5304804 0011716 418 EELLC

Figure 7.9
Unpacked Color
Memory
Organization

SA0 | xBOGORO

xB1GIR1

x B2 62 RZ

x B3 G3R3

x B4 G4 R4

x B5 G5 R6

x B6 G6 R6

xB7G7 R

8 x 8 Block

* o ¢ @

RGBXD RGBX1 RGBX2 RGBX3 RGBX4 RGBX5 RGBX6 RGBX7
DP_0 RGBX8 RGBX3 RGBX10 RGBX11 RGBX12 RGBX13 RGBX14 RGBX15

RGBX56 RGBX57 RGBX58 RGBX59 RGBX60 RGBX61 RGBX62 RGBX63

x B8 G8 R8

x B9 GI RY

x B10 G10 R10

xB11 G11R1

xB12G12R12

xB13GI3R13

xB14 G14R14

xB15GI5R15

MD92.332

Figure 7.10 is a three-dimensional representation of the unpacked display
image in video memory. Complete three-color pixels are generated as the
CPU accesses a 32-bit word from memory. Each access yields a complete
pixel. After eight memory accesses, enough information is available to cre-
ate one of the layers of the three-dimensional 8 x 8 block depicted in the
figure. The subsequent eight accesses result in another layer that belongs

to the next display line.

Video Memory Organization

7-1

B 5304804 DDL1717 354 EMELLC

Figure 7.10 1st Bus Cycle 8th Bus Cycle
Three-dimensional 32 Bits 32 Bits
8 x 8 Unpacked / /
Display Image L XS XS XS XS XS X X/ X /e DisplayLine #
/B /B / B / B B / B / B / B le— Display Line #2
[6/6/6 /6 /6 /6 /6 /6
_/RZR7R7ZR/ZRZRZR /AR
Alolr 23] a|5s]| s |7
8 9 10 n 12 13 14 15
8
Lines / J /S /S S / «— Display Line #7
VA A A A4 L« Display Line #8
[/ /S /S L L / /
y | 56 | 57) %5 |59)60 |61 | 62| 63
|t .|
[>
§ Bytes I MD92334
Packed Color Packed color image data structures are accessed when the IDS field is set
Memory to two. Three color components are assumed to be interleaved and to reside

Organization

7-12

in the same memory region. The packed color image data structure utilizes
an entire 32-bit word for data storage. Because each color pixel is com-
prised of three 8-bit components, each 32-bit word contains portions of
data from adjacent pixels. The advantage of this data-packing scheme is a
25% increase in memory utilization compared to the unpacked method.

Figure 7.11 shows the two-dimensional memory organization of a packed
image data structure. The figure is representative of an image that consists
of data in video memory organized as blocks eight bytes wide by eight
bytes high. The starting address of the active window is in the SA_0 Reg-
ister, and the active window width is in the AW Register.

Because pixel data are packed, every three 32-bit words contain data rep-
resenting four color pixels. Packing data in this manner imposes a restric-
tion on the width specification—the value must be an integer multiple of
four. The active window height is in the AH Register. The total region size
(in pixels) is determined by multiplying the specified display pitch by the
number of display lines that are allocated for the display area. The display
pitch value is limited to integer multiples of four is stored in the DP_0
Register.

Video Memory Organization

B 5304804 0011718 290 EELLC

Figure 7.11
Packed Color SA 0 —— W ———>
Memory - Bx8 8x8 8X8.»..‘.~’
Organization 0] T
ROGOBOR1GT1B1R2G2 » +G6B6R7G7B7
R8GBBSRIGIBY « « « +BI4RI5G15815
e v o o s o oo+ BEIRGIGEIBEI .
The video bus address generator performs the raster-to-block and block-to-
raster translation. Image data are transferred to or from the L64702in 8 x 8
block order. The final placement of the data in video memory is such that
the data are presented to a display device in raster order.
Every video memory cycle involves 32-bit transfers, which, in this case, is
equivalent to one and one-third pixel transfers. This type of image must be
entirely represented using complete 32-bit words. The starting address
must also fall on a 32-bit boundary. The active window width and display
pitch can be any 12-bit integer. The display pitch must be greater than or
equal to the value specified by the width.
Figure 7.12 shows the video bus activity for packed color image data
structures.
Figure 7.12 32-bit
Packed Color Video Bus Cycle 31 2423 16 15 8 7 0
Bus Activity 0 R1 BO GO RO
1 G2 R2 B1 G1
2 B3 G3 R3 B2
3 RS B4 G4 Ra
4 G6 R6 B5 G5
5 B7 G7 R7 B6
6 R9 B8 G8 R8
7 610 R10 B3 G9
8 B11 G611 RI1 B10

The addressing scheme implemented for this mode consists of eight con-
secutive memory transfer cycles, each of which transfers one and one-third
eight-bit pixels, for a total of ten and two-thirds complete pixels every
eight memory cycles. The video bus address generator then skips to an

Video Memory Organization 7-13

BN 5304804 0011719 le? EMLLC

address that is the starting address plus the amount specified in the display
pitch register. The new address points to the starting pixel for a particular
8 x 8 block on the next display line. At this point, eight more pixels are
transferred, and again, the video bus address generator skips ahead to point
to the starting pixel for the block on a new line. Sets of eight pixels are
transferred until an 8 x 8 block (64 pixels) transfer is complete.

As shown in Figure 7.12, eight memory cycles are required to transfer ten
and two-thirds pixels. The first 32-bit word contains the first pixel (RO, GO,
BO) plus one-third of the second pixel (R1). Each additional 32-bit word
contains one and one-third pixels.

Figure 7.13 shows the raster-to-block addressing scheme as implemented
to support the packed color image data structure.

Figure 7.13
Packed Color
Addressing Scheme

SA0 R1 B0 GO RO A
G2R2B1 61
B3 G3R3 B2
R5 B4 G4 R4
G6 R6 B5 G5
B7 G7R78B6

PO 8x 8 Block

B6R7G7B7
B14R15G15B15

ROGOBOR1 G1B1R2G2
RBG8BBRY G9BIR10G10

e o s 00
® & & & » o 9
® s 0000400
® ® 5 & & o o
e & & & o 3 9

B62R63G63B63

R9 B8 GB R8
G10 R10 B9 G9
B11G11R11 B10
R13B12 G12 R12
G14R14B13G13
B15G15R15B14

MD92.337

7-14 Video Memory Organization

B8 5304804 0011720 9y9 ML C

Figure 7.14 is a three-dimensional representation of the packed display
image in video memory. Each access yields one and one-third pixels. After
eight memory accesses, enough information is available to create one of
the layers of the three-dimensional 8 x 8 block depicted in the figure. The
subsequent eight accesses result in another layer that belongs to the next

display line.
Figure 7.14 1st Bus Cycle 6th Bus Cycle
Three-dimensional 32 Bits 32 Bits
8x8 Packed Display
Image /R /G2 B3 /R /@6 / BT /| Display Ling #1
/BO/ RZ/ G3/ B4 / RE / G7 le— Display Ling #2
/ G/ B /R / G+ /B5 /RI
_ R0/ G1/ B2 R4 G5 B6
DNERERERERIERE
6 [7] 8 9 [10| n
8
Lines 7 7 7 /7 |/l Displayline#
/ / / / / // l«— Display Line #8
VA A4
ylL 2] 4|4 |4]|]|
| -l
e 6 Bytes o MD$2.333
Components Components sequential color image data structures are accessed when the
Sequential IDS field is set to three. In this configuration, the L64702 accesses four
Memory color components from four separate memory regions. Each region is
Organization reconstructed from an array of pixels that are packed into a group of four

pixels per address location. The total region size (in pixels) per color com-
ponent is determined by multiplying the display pitch by the number of

display lines allocated for the color component. The display pitch is spec-
ified per color component in the four display pitch registers: DP_0, DP_1,
DP_2, and DP_3. The active window region is the specified area of oper-
ation within the color region and is specified by the following registers:

start address (SA_0, SA_1, SA_2, and SA_3), width (W), and height (H).

Video Memory Organization 7-15

B 5304804 0011721 885 MmLLC

7-16

When operating in the components sequential image structure, the L64702
automatically bypasses the color space conversion unit, because the color
components are assumed to be in the right color space for efficient com-
pression or decompression. The JPEG baseline system standard dictates a
certain sampling scheme that can be attached to each one of the color com-
ponents with respect to the other. However, you must limit the sum of all
the sampling schemes of all the participating color components to a value
less than or equal to 10. The L64702 fully supports this method, and, in
addition, the L64702 allows you to specify the sampling ratio in both the
vertical and horizontal directions.

The sampling scheme is specified through the three registers MBS,
MBS_X, and MBS_Y.

The width and the height dimensions of the active window are derived
from the sampling factors of each color component. When the L64702 is
compressing or decompressing image data in the components sequential
mode, it uses the sampling values for each color component to generate the
addresses that access the image data in the proper order.

Figure 7.15 shows the two-dimensional memory organization of compo-
nents sequential image data structures. Note that the ordering of the 8 x 8
blocks is not indicated, because it is dependent on the sampling scheme
chosen.

Video Memory Organization

B 5304804 0011722 7?11 EELLC

Figure 7.15
Components
Sequential Memory
Organization

SAD

CoC1C2C3C4C506C7
€8 C8C19C1 C12C13C14C15

® % 5 8 s 8 8 s s e 00

*® ® ¢ 5 o 0 8 8 b ¢ b0

Bx818x8

e 56 8 s e 0 e e s e I”btnoo.ot'

*® S 06 0 6 8 0 0 &

» C60 C61 C62 C63

y

LI I

SA_1

MO M1 M2 M3 M4 M5 M6 M7
M8 M3 M19 M11 M12 M13 M14M15

® 8 & 0 & 0 6 0 8 b6 8 b 0 @

e o o o

. 4 ® @

¢ o =

o o = @
O

*
. o 0

L]

.

s ¢ © @
¢ o
2 4 8 @
e o o @

- LI .

.
.
.
L
.

M60 M61 M62 M63

SA_2

YOY1Y2Y3Y4Y5Y6 Y7
Y8Y9Y19Y11Y12Y13Y14Y15

e & 6 6 06 & 5 2.0 2w

*® ¢ & & & 0 & 0 ¢ 0

L]
*
* & & ¢ 0 4 0 % 0 s o
L]

® & & 0 @ 0 0 s 0 s 0

Y

Y60 Y61 Y62 Y63

SA3

KO K1 K2 K3 K4 K5 K6 K7
K8 K3 K19 K11 K12 K13 K14 K15

s & 6 0 0.8 0

8 & 0 s 0 0

¢ @
. o
LI]
o ®

.
3
e v 0 s 0 0
*

s o & o
L

8.8 e 0. o @

K60 K61 K62 K63

Video Memory Organization 7-17

BR 5304804 0011723 b58 EMLLC

The video bus address generator performs the raster-to-block and block-to-
raster operations when transferring data from video memory to the L64702
or from the L64702 to video memory, respectively. Image data are trans-
ferred to or from the L64702 in 8 x 8 block order. The data placement in
video memory is such that the data are presented to a display device in ras-
ter order.

Every video memory cycle involves 32-bit transfers (four pixels). There-
fore the specified active window width must be a multiple of four (4, 8, 12,
16, etc.). The start address must also be aligned with a 32-bit boundary.
You must specify proper values in the starting address registers as well as
the width and height registers to prevent any overrides. Any mix of data
between color regions results in image data corruption.

Figure 7.16 shows the addressing scheme implemented for this mode. The
basic concept of the addressing is that the image data are transferred one
8 x 8 block at a time in an order that is specified by the sampling scheme.
The figure shows how MCUs are accessed according to the parameters
specified in the MBS, MBS_X, and MBS_Y Registers.

In Figure 7.16, each color component has six regions. Each region has
within it some dots that represent 8 x 8 data units. Each data unit is desig-
nated with a grid designation. Thus the top leftmost data unit is designated
as C00. The next one to the right is CO1 and so on.

7-18 Video Memory Organization

—

B 5304804 0011724 594 BELLC

Figure 7.16
Components
Sequential
Addressing Scheme
C M Y K
01 23 45 01 23 465 0 1 2 0 1 2
0]e 0 o—»&»&a 0 0| &>
Z O‘:;: 0 / d;__'.
1] 1 1 e 1
: . T
3 3
MBS_0=4 MBS_1=2 MBS_2=2 MBS_3=1
MBS_X 0=2 MBS_X_1=2 MBS_X_2=1 MBS_X_3=1
MBS_Y 0=2 MBS_Y_1=1 MBS_Y_2=2 MBS_Y_3=1
MCUO = C00 CO1 €10 C11 MO0 MO1 YOO Y01 KOO
MCU1 = C02 C03 C12 €13 M02 MO3 Y01 Y11 K01
MCU2 = C04 C05 C14 C15 M04 M05 Y02 Y12 K02
MCU3 = C20 C21 C30 C31 M10 M11 Y20 Y30 K10
MCU4 = C22 €23 C32 C33 M12 M13 Y21 Y31 K11
MCUS5 = C24 C25 C34 C35 M14 M15 Y22 Y32 K12 MOs2341

MCUO is constructed of 8 x 8 data units taken first from the top left-most
region of the C color component, followed by data units from the same
region of the M component, then from Y then from K. MCUT1 is con-
structed following the same ordering for data taken from the next region to
the right for the four components. This same procedure is followed for
constructing MCO through MC5.

Image data are transferred in 32-bit words (four pixels) per memory cycle.
The L64702 transfers 16 words of 32-bit per 8 x 8 color component block.
Figure 7.17 shows the video bus activity for color component C, according
to the parameters specified in Figure 7.16. The bus activity for the other

components follows that of the C component in the order C, Y, M, and K.

Video Memory Organization 7-18

B 5304804 001L725 420 MELLC

Figure 7.17
Components
Sequential Video
Bus Activity

7-20

[— 32-bit —
Bus Cycle 3 0
0 £3C2C1C0
1 C7C6C5Ca
2
C00
13
14
15 C63 C62 C61 C60
16 c3C2C1C0
17 C7C6C5Ca
cot
29
30
31 C63 C62 C61 C60
32 C3C2C1C0
k<] C7C6C5C4
c10
45
46
4 C63 C62 CB1 C60
48 €3C2C1C0
49 C7C6C5Ca
N
61
62
63 £63 C62 C61 60

Video Memory Organization

MD92.342

B 5304804 001172k 367 EELLC

14 The principle of subsampling is based on the fact that while each pixel of

Image luminance is needed to maintain image fidelity, every other pixel of

Subsampling chrominance may be eliminated with no noticeable effect on the displayed
results.

Subsampling ratios are specified in the L64702 Macro Block Size (MBS)
Register. A sampling number for each component may be specified. For
example, the ratio 1:1:1 specifies that for every sample of Y, there is also
one sample of Cr and one of Cb. A 1:1:1 ratio does not really perform sub-
sampling, because all of the original image data remains intact.

A ratio of 2:1:1 specifies that every pixel of Y is sampled, but only every
other pixel of Cr and Cb is sampled. The result of 2:1:1 subsampling is that
twice as many Y components are sampled than either of the Cr or Cb com-
ponents. Using a 2:1:1 sampling ratio, the L64702 operates on a display
segment 16 pixels wide by eight lines high and converts it to two 8 x 8
blocks of Y and one 8 x 8 block each of Cr and Cb.

A ratio of 1:1:1 specifies that every Y pixel is sampled, however, neither
the Cr nor the Cb pixel is sampled.

Figure 7.18 illustrates how the components of an RGB image are con-
verted by the Color Space Converter to YCrCb, then subsampled with a
2:1:1 sampling ratio into a final YCrCb MCU format consisting of two
blocks of Y and one each of Cr and Cb. The net result of 2:1:1 subsampling
is that for each block of 16 x 8 chrominance values, a single 8 x 8 block is

produced.
Figure 7.18 8 8
Color Conversion s 8 v g
and Subsampling Y ! o Y
from RGB to YCrCh 8 Ro [Ry —> >

\

3x3 Cr
8| Go| G > Eonversio] > d
Matri - -
B, _ atrix Cb | Sub » Cr, |8

Sampling

m
A
\

8
QOrigina! Image

by |8

A

Converted and
2:1:1 Subsampled
Image

Video Memory Organization 7-21

B 5304804 0011727 273 EELLC

Figure 7.19 illustrates how the components of an RGB image are con-
verted by the Color Space Converter to YCrCb, then subsampled with a
1:0:0 sampling ratio into a final Y MCU format.

Figure 7.19 8
Colar Conversion sl n Y 8
and Subsampling > a3 - >
x . 8
from RGB to ¥ 81 6 > Eonve@io] > Saﬁ%)ling —
o[B - Matrix Cb .~
. Converted and
Original Image 1:0:0 Subsampled
Image
15 The L64702 windowing capability allows you to define a window within
Scrolling in a compressed file for decompressing a portion of an image and displaying
Compressed this portion on a screen. This feature is useful for handling large com-
Files pressed files. For example, a color scanner generates an image for an 8.5”
x 117, 300-dpi page. This image contains approximately 25 Mbytes of dis-
play information, which represents an image resolution of 2550 x 3300
pixels. This resolution is far beyond what can be displayed on a regular
monitor, which has a typical resolution of 640 x 480 pixels.
Using the L64702 windowing feature, you can specify a display window
in the compressed file and dynamically scroll the window within the file.
This feature allows previewing portions of an image prior to printing.
Figure 7.20 shows the parameters that define the window.
7-22 Video Memory Organization

M 5304804 0011728 13T EALLC

Figure 7.20 i X -

DecompressedArea e AW —>

Inside of a i T

Compressed Image

MCU_VD
Y AH
Y

Because the image is in compressed format, the image boundaries on the
horizontal and vertical directions are assumed to be on MCU boundaries.
The X and Y parameters define the total image resolution as specified in
the compressed file header—they are not L64702 parameters. The Active
Height (AH) and Active Width (AW) parameters are the active window
parameters and, by definition, their values are in terms of MCUs. Image
Width (IW) is the parameter that specifies how many MCUs lie between
the left edge of the active window and the actual horizontal edge of the pic-
ture.
Two parameters, MCU_HD and MCU_VD, control the position of the
active window in the compressed file. These negative, signed parameters
define in terms of MCUs the specific starting point of the displayed portion
of the compressed file. The software that controls L64702 initialization
must be in accordance with Equation 7.1 and Equation 7.2 to prevent win-
dow violation.

Equation 7.1

Horizontal Scrolling X<|MCUHD| +1W

Equation 7.2

Vertical Scrolling ~ © = MCUVDI +4H

Refer to Chapter 3, “Internal Registers and Data Tables,” for more infor-
mation regarding the window parameters mentioned above.

Video Memory Organization 7-23

B 5304404 0011729 07k EALLC

1.6 'This section focuses on the video memory interface, because this interface
Active Window employs most of the L64702 addressing capabilities. Note that the 164702
and can access video memory composed of DRAMs and SRAMs with no
Two-Dimensional restrictions.

Addressing

The physical address space of image data in video memory is linear; that
is, the pixel data of an image are stored in sequential memory locations.
Pixel data may be organized as bytes (eight bits) for gray scale, or three
bytes (24 bits) for color. However, for any image data format, the L64702
accesses 32-bit data, which may contain from one to four pixels.

When dealing with image information, it may be easier to conceptualize
the image as two-dimensional. The L64702’s on-board video addressing
unit translates parameters from two-dimensional to linear address space. In
addition, the video addressing unit performs the special function of raster-
to-block or block-to-raster address conversion, which is essential for the
L64702’s JPEG Unit.

The display area is the total area in the memory that will be displayed on
the screen. The active window area is the subsection of the display where
the L64702 is actually accessing data.

Figure 7.21 illustrates in two dimensions a typical display screen, which is
represented by the video memory contents and the active window portion
within that display screen. Four parameters determine the active window
area and the method the 1.64702 uses to operate within that window:

Active Window Start Address (SA)
Active Window Width (AW)
Active Window Height (AH)
Display Pitch (DP)

The Start Address (SA) is the absolute address of the pixel located in the
upper left corner of the active window area. The Active Width (AW) is the
number of MCUs in one active window line. The number of pixels can be
computed from this parameter. The Active Height (AH) is the total number
of lines in the active window. The Display Pitch (DP) is the total number
of pixels in the scan line.

An external CPU may control these four parameters by writing to the
L64702 video control registers.

7-24 Video Memory Organization

B 5304804 0011730 898 EELLC

Figure 7.21 - AW »
L64702 Active
Window Area and / \
2-D Addressing
Scheme T
/ AH
s l
-€] >
Active Window The four starting address registers, SA_0, SA_1, SA_2, and SA_3, deter-
Start Address mine the active window start address. Each starting address register is

associated with a specific color component (R, G, B or C, M, Y, K). The
starting address register is used if the corresponding color plane is active.
The sampling ratio specified in the MBS, MBS_X, and MBS_Y sampling
control registers determines whether the plane is active or not. A sampling
ratio is specified for each color component. See Chapter 3, “Internal Reg-
isters and Data Tables,” for more information on the sampling control
registers.

When the 164702 is programmed to process color images, the starting
address of the image depends on whether the image is single- or multiple-
source. For single-source color images, where the entire video image is
contained in a single memory region, only the SA_0 Register is used. For
multiple-source color RGB images, where each of the three color compo-
nents of the image is contained in a separate memory region, SA_0, SA_1,
and SA_2 are used.

For components sequential color CMYK images, where each of the four
color components of the image is contained in a separate memory region,
SA_0,SA_1, SA_2, and SA_3 are used. The 24-bit value specified in the
starting address register is the physical memory address of the starting
pixel of the color component and represents the starting address linear
memory offset from zero.

Video Memory Organization 7-25

M 5304404 0011731, 724 EALLC

Active Window The AW Register in conjunction with the Height Width Register for a par-

Width ticular color component specify the total number of MCUs in the active
window area, counted in the horizontal direction. Equation 7.3 and Equa-
tion 7.4 specify how the L64702 uses the contents of the AW and HO_ W0
Registers to calculate the number of MCUs within the active window in the
horizontal direction for color component zero. The same equations apply
to all color components (0, 1, 2, or 3).

Equation 7.3
ive Wi AW = (X)/B]-1 whereB=8xMBS_X
Active Width W=T[(X)/B] where B = 8 x
Calculation
Equation 7.4) W0 = (X-1)%B where WO is the remainder resulting from the division operation
W0 Calculation

An example for calculating the AW value is to use color mode, RGBx for-
mat, a sampling ratio of 1:1:2, a total number of pixels per line X = 640,
and an MBS_X_0 value of two. See the next subsection for an explanation
of sampling ratios and MCU construction.

Continuing with the example, we will assume that MBS_X_0 =2 and
MBS_Y_0 = 1. The MCU size in this case is eight lines by 16 pixels or
words, so the value of AW is the ceiling of (640/16) — 1 = 39. Since the
numbering of the value in the AW Register begins with zero, the total num-
ber of MCUs specified in the AW Register is 40 (0 through 39). The value
of WO is the remainder of (640 - 1)/ 16, or 15. A value of 15 in the WO
Register indicates that all of the pixels in the last horizontal MCU are used,
yielding a complete, final MCU.

When W is not on an MCU boundary, the Height Width Registers make up
the difference. For example, if W = 641 pixels or words, the value of AW
is the ceiling of (641/16) — 1 = 40. Since the numbering of the value in the
AW Register begins with zero, the total number of MCUs specified in the
AW Register is 41 (0 through 40). The value of WO is the remainder of
(641 — 1)/ 16, or zero. A value of zero in the WO Register indicates that
only one display pixe! or word is in the active window for the last MCU.

The WO value determines the number of active display pixels or words in
the last MCU as shown in Table 7.2.

7-26 Video Memory Organization

—

BN 5304804 DOLL732 bLO BELLC

Table 7.2
Number of Display
Pixels or Words

Active Display
Pixels or
wo Words

N bW N = O
00 N1 AN L b W N

Active Window
Height

Equation 7.5
Active Height
Calculation

Equation 7.6
HO Calculation

The AH Register in conjunction with the Height Width Register for a par-
ticular color component specify the total number of MCUs in the active
window area, counted in the vertical direction. The following equations
specify how the L64702 uses the contents of the AH and HO_WO Registers
to calculate the number of MCUs within the active window in the vertical
direction for color component zero. The same equations apply to all color
components (0, 1, 2, or 3).

AH =[Y/AT1 -1 where A =8 x MBS_Y

HO = (Y-1)%A where HO is the remainder resulting from the division operation

An example for calculating the AH value is to use color mode, RGBx for-
mat, a sampling ratio of 2:1:1, a total number of lines Y =480 in the active
image that are to be displayed, and an MBS_Y _0 value of one. The sam-

pling ratio of 2:1:1 indicates that two MCUs of color component 0 are sam-
pled for every one MCU of the other color components.

In order to completely specify how the L64702 is to perform sampling, the
MBS_0, MBS_X_0, and MBS_Y_0 Registers must be written. The
MBS_0 Register specifies how many 8 x 8 data blocks of color component
0 are included in an MCU. The MBS_X_0 Register specifies how many
8 x 8 blocks in the horizontal direction to include in the sample for color
component 0, and the MBS_Y_0 Register specifies how many blocks in
the vertical direction to include in the sample for color component 0. In a
similar fashion, the MBS_1, MBS_2, MBS_3, MBS_X_1, MBS_X_2,

Video Memory Organization 7-27

BN 5304804 0011733 577 MALLC

MBS_X_3, MBS_Y_1, MBS_Y_2, and MBS_Y_3 Registers correspond
to the components of the MCU included from the other color components.

In a 2:1:1 sampling scheme, MBS_0=2,MBS_1=1,and MBS_2=1.
Since MBS_0 = 2, there are two possibilities of how the sampling is per-
formed. One possibility is that two 8 x 8 blocks are sampled in the horizon-
tal direction, in which case MBS_X_0=2, and MBS_Y 0 = 1. The other
possibility is that two 8 x 8 blocks are sampled in the vertical direction, in
which case MBS_X_0 =1, and MBS_Y_0 = 2. The remaining MBS_X
and MBS_Y Registers all contain a value of one, because there is only a
single 8 x 8 block from each, and there is no vertical or horizontal sampling
sequence.

Continuing with the example, we will assume that MBS_Y_0 = 1. The
MCU size in this case is eight lines by 16 pixels, so the value of AH is the
ceiling of (480/8) -1 = 59. Since the numbering of the value in the AH
Register begins with zero, the total number of MCUs specified in the AH
Register is 60 (0 through 59). The value of HO in the HO_WO Register is
the remainder of (480 — 1)/ 8, or 7. A value of 7 in the HO Register indi-
cates that all of the last MCU is active.

When Y is not on an MCU boundary, the Height Width Registers make up
the difference. For example, if Y =481 lines, the value of AH is the ceiling
of (481/8) — 1 = 60. Since the numbering of the value in the AH Register
begins with zero, the total number of MCUs specified in the AH Register
is 61 (0 through 60). The value of HO is the remainder of (481 — 1)/ 8, or
zero. A value of zero in the HO Register indicates that only one display line

in the 61st MCU is active.
The HO value determines the number of active display lines in the last
MCU as shown in Table 7.3.
Table 7.3 Active Display
Number of Display HO Lines
Lines 0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
7-28 Video Memory Organization

B 5304804 0011734 433 EALLC

Active Height and
Width Example

Table 7.4
W, and AW Values
for the Color Modes

This subsection calculates the values of W, H;,, AW, and AH for the four
sampling modes assuming a 640 x 480 active image.

The values of W, and AW for the three color modes for a 640 x 480 active

image are shown in Table 7.4.

1:0:0, 1:1:1 2:1:1
Image Format Wn AW Wn AW
Unpacked 7 79 15 39
Packed 5 79 1 39
Multisource 1 79 3 39

The values of W, and AW for the components sequential mode are listed
in Table 7.5.

Table 7.5 Components Sequential W, W, W, W; AW
W, and AW Values . 2 " 1
for Components) . : 3 3 1 1 39
Sequential Mode (640 x 480) (640 x 240) (320 x 240) (320 x 240)
The value of H, for the three color modes is 7, and the value of AH is 59.
For the components sequential mode, the values of H, and AH are listed
in the following table.
Table 7.6 Components Sequential | Hy, H, H, H; AH
H, and AH Values o 2 L]
for Components) . ' 7 7 39
Sequential Mode (640 X 480) (640 x 240) (320 X 240) (320 x 240)
Active Window The four display pitch registers, DP_0, DP_1, DP_2, and DP_3, determine
Display Pitch the active window display pitch parameter. Each display pitch register is

associated with a specific color component. The value in each register
determines the total number of pixels per display line. In a display system,
the display pitch parameter determines the memory distance between two
adjacent vertical pixels. The actual width parameter of the color compo-
nent must be less than or equal to the display pitch of the color component,
unless such a value produces an invalid result.

The display pitch register is used if the color plane is actually active. The
sampling ratio specified in the sampling control registers MBS, MBS_X,
and MBS_Y determines whether the color plane is active.

Video Memory Organization 7-29

E@ 5304804 0011735 37T MALLC

When the 164702 is programmed to process color image structures, the
use of the display pitch registers varies depending on whether the image is
single-source, multiple-source, or components sequential. For a single-
source color image, only the DP_O register is used. For multiple-source
RGB color images, the first three registers are used (DP_0, DP_1, and
DP_2). For components sequential color images, all four registers are
used.

7-30 Video Memory Organization
000t

B 5304804 001173L 20k EALLC

Chapter 8
Pixel Data Processing
Overview

This chapter presents a functional overview of the image data pre- and
post-processing, which is performed in the front-end video interface. Fig-
ure 8.1 shows the block diagram of the pixel data processing section.

This chapter contains four sections:

m Section 8.1, Pixel Data Reformatting Buffer (PRB)
m Section 8.2, Color Space Converter (CSC)
m Section 8.3, Level Shifting and Range Limiting
m Section 8.4, MCU Buffer
Figure 8.1
Pixel Data
Processing Block MCU
Diagram 0
'ag qugk Range Range PEB
Limiter/ Limiter/ | Video
Level CSCI<1 Level PRB } Bus
Shifter Shifter 1
MCU
1 PRB
MCU BUF
8.1 The L64702 must convert the input data structures to a single internal for-
Pixel Data mat that can be used by the color space conversion unit and other process-
Reformatting ing modules. The PRB performs image data reformatting in real time in
Buffer (PRB) both direction. The IDS field of the SCR Register determines the image

data format at the video memory interface and instructs the PRB on how
to handle the image data. To maintain the pipeline data rate for the various
image data structures, the PRB unit contains two buffers with storage for
four pixels each. Figure 8.2 shows how the reformatting unit reformats

Pixel Data Processing Overview 8-1

5304404 0011737 luc EALLC

packed color image data into a format compatible with the color space con-
version unit.

Figure 8.2
Pixel Data —n_, L
Reformatting 5
Concept 0 e Pixel Color
vg:]? B Reformatting <_G> Space
Buffer Conversion
R B
P e E—
RO G1 B2 R4 G5 B6
Video GO B1 R3 G4 B5 R7
Bus BO R G3 | B4 RE 67
R1 G2 B3 RS G6 B7
\RO R1 Rz R3 / R4 R5 R6 R7/
Color
Conversion B0 B B2 B3 B4 BS B6 B7
8.2 The Color Space Converter in the L64702 supports any linear transforma-
Color Space tion of a 3 x 3 matrix by multiplying the vector by a 3 x 1 vector. An exter-

Converter (CSC) nal CPU or DMA Controller can download the nine coefficients of the
3 x 3 matrix. These coefficients are completely flexible, and allow a wide
variety of conversions to take place. The matrix is bidirectional to allow
color space conversion in either direction. The ENC bit in the SCR Regis-
ter determines the direction of operation of the L64702 (compression or
decompression). The values in the 3 x 3 matrix must be downloaded as
appropriate for the operation being performed.

Figure 8.3 shows the color space conversion matrix.

82 Pixel Data Processing Overview

5304804 0011738 049 EALLC

Figure 8.3 — —
Color Space R ——— all al2 al3 > Y

Conversion Unit

G -—» b21 b22 b23 e— (,

B +—» c31 c32 ¢33 ———» (,

811 %12 %13 Y
= |z ay ay| *|Cr
ay ay azp| D
The CSC interfaces to the PRB on one side and to the MCU buffer on the
other. The SUOQ - SU2 fields in the Video Bus Configuration Register deter-
mine whether data from the PRB are treated as signed or unsigned num-
bers. Unsigned values range from 0 to 255, while signed values range from
-128 to 127. On the MCU buffer side, numbers are assumed to be eight-bit,
signed numbers. Range limiting is performed automatically on both sides,

depending on the operation, to prevent any data corruption due to mathe-
matical overflow or underflow.

W Q=

MD93.346

The coefficients in the matrix are 11-bit, two’s-complement numbers, con-
figured as a nine-bit fraction, a single integer bit, and a single sign bit.
Coefficients range from -2.0000 to +1.9980.

Figure 8.4 shows the format of the color space conversion during the
encoding process. The vertical dashed line represents the location of the
binary point during the conversion process. The conversion steps are out-
lined below.

1. During compression, eight-bit image data from the video bus are mul-
tiplied by the 11-bit CSC coefficient.

2. The multiplication yields three partial product terms, or partial results,
represented by 19-bit, signed numbers with values ranging from
-510.0000 to +509.5019.

3. The three partial results are added together to produce the 21-bit prod-
uct with values ranging from -1530.0000 to +1528.5057.

4. The eight bits situated immediately to the left of the binary point form
the final result.

Pixel Data Processing Overview 83

B 5304804 0011739 T15 ®=LLC

The CSC then processes the eight-bit number by level shifting and range
limiting, if necessary, to deliver a final result with a value ranging from
-128 to +127. During the process, the CSC maintains accuracy such that
computational errors do not exceed one half of an LSB.

Figure 84 8-bit Input 7 0
-bit Inpu
Color Spface Unsigned Word 1 0 to 255
Conversion for 1bit Two's 10 9]8 0
Unsigned Numbers Complement Coefficients - Is] T -2.0000 to +1.9980 ul
R Partil [s] 510,000 to +508.5019]
21-bit 20 19 9[8 0
Product B -1530.0000 to +1528.5057]
A 7 0
gebslzlltj nsigned L 0 to 255 {Range Limited)
. 7.6 0
f(;tgtc'{‘p“t [5] -128 to +127 (Level Shifted)

The most common color space conversions are described in the following
subsections. The values loaded into the conversion matrix are 11-bit num-
bers with values ranging from -2.000 to +1.998. Bit 10 is the sign bit. The
binary point falls between bits 9 and 8. Therefore bit 9 is the integer part

of the coefficient (1 or 0), and bits 8 through 0 make up the fractional part.

RGB-to-YC,C, YC,,C, color space has been found to be very efficient in achieving high
compression ratios for most applications. This transformation is recom-
mended by the CCIR 601 standard. Equation 8.1 shows the formula for
transforming from RGB to YC,C; color space.

Equation 8.1
RGB-to-YC,C,, Y 0299 0587 0.114] [R

Cb| = |-0.1687 -0.3313 05 |X|G

Cr 05 -0.4187 -0.0813 B

092.348
YC,C,-to-RGB Equation 8.2 shows the formula for computing RGB components from
YC,,C, components.

Equation 8.2
YC,Cpy-to-RGB R 1.0 00 1.402 Y

G| = 1.0 -0.3437 -0.7143| > | Ch

B 1.0 1.772 0.0 Cr

MD92349

84 Pixel Data Processing Overview

B2 5304804 0O0LL740 737 EALLC

RGB-to-Y (Gray)

In this conversion, the color image is converted into a black-and-white
image. Because the chrominance information, CyC,, is removed from the
picture, the operation is not reversible. There are two methods of conver-
sion in this case. The first method entails setting the chrominance compo-
nents to zero in the conversion matrix and converting as if three
components existed. In the second method, the Y component is com-
pressed as a single component. The second method provides for a better
compression ratio, because it does not contain the empty blocks of the
chrominance components as does the first method.

Y-to-RGB If a gray scale image needs to be displayed on a color monitor, the three
color components must be the same. Equation 8.3 shows the matrix used
to perform this conversion.

Equation 8.3

Y-t0-RGB v| 0299 0587 0.114 [R

Chl =00 00 00]|X{G
Cr 00 00 00 B

Color Space To bypass color space conversion, the conversion matrix is programmed as

Conversion a unit matrix. Equation 8.4 shows the formula for the color space conver-

Bypass sion bypass.

Equation 8.4

Color Space Y 1.0 0.0 0.0 Y

Conversion Bypass Cb| = |0.0 1.0 0.0| X [Cb

Cr 0.0 00 1.0 Cr
MD92.351

8.3 The 164702 includes two range limiters and a level shifter. The user can

Level Shifting load matrix coefficients that could conceivably cause out-of-range values

and Range to result during multiplication. The range limiters correct for out-of-range

Limiting numbers by clipping the values.

Figure 8.5 shows the range limiters and level shifter for both the encode
and decode directions. SC[2:0] refers to the sign of the color space conver-
sion components and SP[2:0] refers to the sign of the pixel components.

Pixel Data Processing Overview 85

B 5304804 001174l 73 EELLC

Figure 8.5
Range Limiters and
Level Shifter

Encoder Sciz0]

Pixel Fixed Range
—> Refgrmatting > chonrviEth,e] Limiter E’;\ﬂggr >
uffer {-1281t0 +127)

A 4

-128

SP[2:0]

Decoder SC[2:0)

Pixel Range Limiter c
P ina lae— (- < olor Space MCU
RefgLnf'lf:trtmg - (u1r2 g:g ;;5)7 - Converter Buffer «

+128 MD32.352

For a complete explanation of the function of these bits, refer to Chapter 3,
“Internal Registers and Data Tables.”

8.4
MCU Buffer

8-6

The MCU buffer interfaces the CSC with the DCT unit. The MCU buffers
a complete set of data that reconstructs a complete MCU data structure. To
maintain continuous data flow through the JPEG pipeline processor, the
MCU buffer contains two sets of parallel buffers organized in a double-
buffer architecture. When the DCT unit is accessing one buffer, the CSC
can access the other buffer. Each internal buffer contains 256 eight-bit
words; enough capacity to store four data units of 64 samples each. The
L64702 switches between the buffers at a frequency determined by the
MCU size. The MCU buffer generates wait states to ensure synchroniza-
tion of the two sides because the two sides can be forced by the external
system to function at different speeds.

Figure 8.6 shows the internal organization of the MCU buffer.

Fixel Data Processing Overview

BN 5304804 0011742 50T EELLC

Figure 8.6 MCU Buffer
MCU Buffer AR :
Configuration : :
. - 256 x 8
i (Holds up to Four 64-by-8 Blocks)
From _8, To
csc : DCT
: _ 256x 8
' ' {Holds up to Four 64-by-8 Blocks)
;..,.,....,.,,,.....,,.,,,.,,,,,,,,,..,.,,,.,,,..,...,.,,,,E MD$2.353

The DCT unit processes data at the rate of one byte per four cycles. The
MCU buffer supplies data at the appropriate rate to the CSC and the video
bus.

Figure 8.7 summarizes the maximum data rates for the different sampling
factors and image data structures. The values are given in bytes per clock
cycle.

Pixel Data Processing Overview 8-7

B 5304804 0011743 4ub EELLC

ng’:e 87 Color Space Conversion Data Rates
Maximum Data
Rates Pixel .| Pixel
Bus - i RAM
DCT - > csC - >
Y 1B/4 Cycles 1:0:0 4 B/16 Cycles YYYY
Y 1B/8Cycles 1:0:0 3 B/8 Cycles RGB-
Y 1B/6 Cycles 1:0:0 4 B/8 Cycles RGBRGBRGBRGB
RRRRGGGGBBBB
YCrCb 1B /4 Cycles 1:1:1 4 B/48 Cycles YYYY
YCrCb 1B /4 Cycles 1:1:1 3 B/12 Cycles RGB-
YCrCb 1B /4 Cycles 1:1:1 4 B/16 Cycles RGBRGBRGBRGB
RRRRGGGGBBBB
YYCrCh 1B /4 Cycles 2:1:1 4 B/32 Cycles YYYY
YYCrCb 1B /4 Cycles 2:1:1 3B/8 Cycles RGB-
YYCrCb 1B /4 Cycles 2:1:1 4 B/10 2/3 Cycles RGBRGBRGBRGB
RRRRGGGGBBBB
Note:

1. Maximum data rates: DCT. 1 byte/4 Cycles, Pixel Interface: 1 word/ 8 Cycles

The DCT unit requires a block of 8 x 8 pixels. The L64702 allows you to
specify any integer number of words to be the image width size and any
number of lines to be the height size. Sometimes the width and height spec-
ifications do not fall on an MCU boundary. For proper operation of the
JPEG unit, the image size must fall on an exact MCU boundary. To fulfill
this requirement, the L64702, when necessary, extends the boundaries of
the image width and height parameters within the memory space frame,
with certain restrictions for particular image data structures. Two parame-
ters per color component (WO_HO, W1_H1, W2_H2, W3_H3) specify the
number of words in the last MCU block in the horizontal direction, and the
number of lines in the last MCU in the vertical direction. If the relevant
parameter is zero for both the width and the height, no pixel or line filling
is performed. When the active window width specified by the Width
parameter is not an integer multiple of eight, the L64702 automatically fills
the rightmost sample block with zeros as many times as required.

88 Pixel Data Processing Overview

B 5304804 0011744 382 EELLC

When the active window height specified by the Height parameter is not
an integer multiple of eight, the L64702 adds lines filled with zeros as
many times as required to fill the block.

Figure 8.8 shows an example of a boundary fill for the case where both the
width and the height specification for the active window are not integer
multiples of eight—in this case, the active window for the compression
direction is extended to both the vertical and horizontal directions. During
decompression there is no active window extension—the exact active win-
dow size is transferred to the video memory, and the pixels and lines out-
side the active window boundary are masked out.

Figure 8.8
MCU Boundary
Schemes

00000 000

MD92.355

Pixel Data Processing Overview 89

BN 5304804 0011745 219 EELLC

Chapter9
Video Memory Interface
Port

This chapter describes the interface between the 164702 and the external
video memory bus provided by the L64702 video interface.

Chapter 9 has three sections:

m Section 9.1, Video Bus Arbitration Protocol
m Section 9.2, Video Bus Request Criteria and Priorities

m Section 9.3, Video Bus Interface Timing

9.1 The L64702 contains a Video Bus Control (VBC) block, which controls

Video Bus the operation of the video bus. The VBC block generates the addresses as
Arbitration well as all of the control signals that interface the chip to external VRAM
Protocol or DRAM memory. The L64702 acts as master on the video bus and pro-

vides two control lines to provide bus sharing with another bus master,
such as a graphics coprocessor or digital signal processor.

The L64702 asserts and holds LOW the video bus request signal, VBRQ,
to request the bus. An external video bus master asserts and holds LOW
the video bus acknowledge signal, VBACK, when the external bus master
is ready to grant the bus to the L64702. As long as VBACK and VBRQ are
asserted, the L64702 has control of the video bus, and generates the
address, data, and control lines to provide data transfers to and from video
memory. If the L64702 is the only bus master connected to the video bus,
you may connect the VBRQ and VBACK signals together.

Figure 9.1 shows the regular video bus arbitration scheme. The minimum
video bus cycle is eight CLKs (TO, T1, ..., T7). An external device may
extend the bus cycle with the video bus wait signal, VWAIT. If an internal
request for a video bus cycle has been generated, the L64702 asserts the
VBRQ signal. The 164702 asserts the VBRQ signal only if VBACK has

Video Memory Interface Port 9-1

B 5304804 0O0LL74bL LS55 WMLLC

Figure 9.1

Regular Video Bus
Arbitration Protocol

CLK

<7
2]
=
(=]

VBACK

Video
Bus

92

| 10 |

\/

been previously inactive (HIGH) for at least one clock. When VBACK
goes active (LOW), the L64702 has been granted the bus.

After the L64702 asserts VBRQ, it waits for VBACK to be asserted. When
the L64702 determines that VBACK is LOW, it starts a video bus cycle
one CLK later. At this point, all of the 164702 video bus control and data
signals change from 3-state to active. The L64702 deasserts the VBRQ sig-
nal if internally there is no demand for the video bus. The internal video
bus request criteria are described in the following section. When the
L64702 deasserts VBRQ), it 3-states all video bus lines. An external master
must deassert VBACK before the 1.64702 can assert VBRQ again to per-
form another video bus cycle.

To

Video Bus Cycle MD92365

An external video bus master has the right deassert the VBACK signal to
force the L64702 to relinquish the bus at any time. If the external master
processor deasserts VBACK while the L64702 is using the bus, the
164702 releases the bus after a maximum of eight CLKs. To notify the
graphics processor that it is relinquishing the bus, the L.64702 deasserts
VBRQ for a minimum of two CLKs while VBACK is deasserted. The
L64702 then reasserts VBRQ to indicate that the video bus activity has not
been completed.

Video Memory Interface Port

B 5304404 0011747 091 EMELLC

Figure 9.2 shows the bus preemption protocol.

Figure 9.2

Video Bus
Arbitration
Preemption Protocol

T0 T0 T0 T n T3 T4 15 6 | T T | T0
NAVAVAVAVAVAVAVAVAVAVAVAN
I —— 7
¢ el [/
VBACK TN\ /
Video ,) \
Bus \ . - ﬁs_
: : MD92.365
9.2 Three internal sources may demand video bus cycles: video memory
Video Bus cycles (memory read or memory write), memory refresh cycles, or video
Request Criteria memory transfers (DRAM core to shift register). All three sources may
and Priorities request service at the same time, so a priority scheme has been established

to share the video bus among the different sources. The following sources
may request the video bus, with 1 being the highest priority and 3 being the
lowest:

1. Video Memory Transfer Cycle
2. Video Memory Refresh Cycle
3. Video Memory Cycle

Figure 9.3 shows the L64702 internal video bus arbitration block that con-
trols the priority scheme. If the video bus is active with regular video mem-
ory cycles and refresh or transfer requests occur, the L64702 completes the
current bus cycle, and then releases the bus in deference to higher priority
requests. The L64702 resumes the memory read or write cycle only after
higher priority requests have been serviced. Because refresh cycles and
video memory transfer cycles are by definition higher priority than regular
video memory cycles, and are serviced in a single memory cycle, the video
bus cannot be stolen from them. The priority is resolved in the arbitration
block before the start of any memory cycle.

Video Memory Interface Port 9-3

BN 5304804 0011748 T28 EELLC

Figure 9.3
Video Bus Internal
Arbitration Block

164702

Video Memory
Controller

Video Bus
Requests

TR_RQ
TR_ACK |

\

RF_RQ

Y

RF_ACK [«

MEM_RQ

MEM_ACK [«

Video Bus Arbitration
Block

Priority 1
{Video Memory Transfer)

Priority 2
{Video Memory Refresh)

Priority 3
{Normal Video Transfer)

External System

=

' o

A

Resolved
Priority

VBRQ
VBACK

MD92.367

Video Memory

Transfer Request

Criteria

The video transfer request input, VIRR, is responsible for activating the
video memory transfer request signal TR_RQ. An external video timing
circuit produces VTRR. The L64702 uses VIRR for either video memory
display or video capture implementation. Once VTRR is activated, the
internal TR_RQ) signal is asserted and remains active until the video mem-
ory transfer cycle has been performed. If the next transfer request comes
while the previous one is still pending, the new one may be lost because
the transfer address register holds the address of the pending request. In
actuality, it is not likely a transfer request will be lost, because VTRR

occurs only once per video line.

Video Memory
Refresh Request
Criteria

The L64702 produces video memory refresh cycles if the RR field in the
SCR Register is set to active mode. When refresh is active, an internal
refresh counter asserts the RF_RQ signal to produce periodic refresh
request indications. RF_RQ remains asserted until the video bus arbitra-
tion block acknowledges the refresh cycle. If the next refresh request
occurs while the previous one is pending, the current request is lost.

Video Memary
Read or Write
Cycle Request
Criteria

94

The video bus communicates with the 164702 through the two on-chip
MCU buffers. The status of the MCU buffers determines when the L64702
is ready for data transfer, or in other words, when the L64702 will assert

Video Memory Interface Port

BN 5304804 0011749 9ky BLLC

VBRQ. In fact, the MCU full and empty status flags activate the MEM_RQ
signal and do not directly activate the VBRQ signal.

The assertion and deassertion of MEM_RQ is based on the full and empty
flags of the MCU buffers and whether the operation being performed is in
the compression or decompression direction. In the explanation below of
the assertion or deassertion of MEM_RQ, MCUO_E is the MCUQ buffer
empty flag, MCU1_E is the MCU1 empty flag, MCUO_F is the MCUO full
flag, and MCU1_F is the MCU]1 full flag.

During compression, the L64702 asserts MEM_RQ when:

m the MCUO_E flag is set, or
m the MCUI1_E flag is set

During compression, the L64702 deasserts MEM_RQ when:

m the MCUO_F flag is set, and
m the MCU1_F flag is set

During decompression, the L64702 asserts MEM_RQ when:

m the MCUOQ_F flag is set, or
m the MCUI1_F flag is set

During decompression, the L64702 deasserts MEM_RQ when:

m the MCUO_E flag is set, and
m the MCUI1_E flag is set

9.3 The video memory interface includes a multiplexed video address and data

Video Bus bus, VADB[31:0], on which addresses and image data are transmitted to

Interface Timing external memory. The video memory interface also includes a set of con-
trol signals, which allows you to multiplex the address lines between rows
and columns and to easily implement memory banks and interleaving.

The 164702 video memory row address strobe signal, VRAS, latches
addresses and drives the RAS inputs of the VRAM array. Use the video bus
data enable signal, VDEN, to generate multiplexed row and column
addresses, and to indicate when data are actively being driven over the
video bus. The video memory column address strobe, VCAS, drives the

Video Memory Interface Port 9-5

B 5304804 0011750 bab MELLC

Figure 9.4

Typical Row/Column
Address
Multiplexing
Circuitry

96

CAS inputs to the VRAM array. The video data transfer and output enable
signal, VTR/OE, drives the TR/OE inputs, and the video memory write
enable signals, VWE([1:0], are the write strobes. VWEQ is the write strobe
for data bits 0 through 23, and VWET is for bits 24 through 31. Figure 9.3
shows typical circuitry used to generate the multiplexed row/column
addressing for external memory.

VRAS
o=
G OE

Data/Address

L64702 >
Latch
Row/Column Address Bus

Buffer

1l

At the start of a memory cycle, the 164702 drives 24 bits of address on
VADB{23:0] and also provides some status of the video bus cycle over the
video refresh cycle, VRFC, and video transfer cycle, VTRC, lines. The
VADB[27:24] lines also provide status information.

Data

The L64702 drives the address and status information on the video bus for
the first three CLK cycles. The address is valid before and after the falling
edge of the VRAS signal to allow address latching using 741.S373 latches.
The falling edge of the VDEN signal switches the video bus so that the bus
contains data for a total of five clocks. If a memory write cycle is per-
formed, the L64702 outputs video data on the VADB[31:0] bus as full
32-bit words. If a read cycle is performed, external memory drives data
onto the bus. Either the VCAS or VWE][1:0] signals can strobe the data
into external memory, depending on the type of the memory being used.

During a read cycle, the VTR/OE signal becomes active, indicating that
the L64702 is performing an Auto Read from an external device. The

Video Memory Interface Port

B 5304804 DD1L1L75) 512 MLLC

164702 latches the data present on the VADB lines on the LOW-to-HIGH
transition of VTR/OE.

The following truth table shows the various video memory cycles per-
formed by the L64702, and the state of the corresponding VRAM/DRAM
control signals at the falling edge of the VRAS signal.

Table 8.1

VRAM/DRAM Control

Truth Table

Control Outputs Status

Name |Function VCAS VTR/OE VWR VDEN VDSF | VRFC VTRC

REF CAS before RAS Refresh 0 1 1 1 0 1 0

NR/NW [Normal DRAM Read or Write 1 1 1 1 0 0 0

NRT Normal Read Transfer 1 0 1 1 0 0 1
(DRAM -> SAM Transfer)

SRT Split Read Transfer 1 0 1 1 1 0 1
(Split DRAM -> SAM Transfer)

PWT Pseudo Write Transfer 1 0 0 i 0 0 1
(Serial Input Mode Enable)

AWT Alternate Write Transfer 1 0 0 1 i 0 1
(SAM -> DRAM Transfer)

The various types of video memory cycles are summarized below:

m CAS-before-RAS Refresh. The L64702 performs CAS-before-RAS
refresh cycles periodically according to internal requests generated by
the programmable memory refresh counter.

® Normal DRAM Read or Write. The L64702 performs normal read or
write operations in regular compression or decompression operation,
or when the 1.64702 is in transfer-through mode.

m Normal Read Transfer. The L64702 performs a normal read transfer
cycle to transfer an entire 32 bits of data from the DRAM core to serial
access memory, (SAM), when the 1.64702 is in the display mode with
the capture/display bit, C_D, in the SCR Register, set to zero. This
cycle is performed in response to detection of the falling edge of the
video transfer reset signal, VTRS. You should perform a normal read
transfer before any sequence of Split Read transfers, so that the SAM
begins with a full 32 bits of data in it. If VTRS is driven by a VSync-
type signal, the L64702 performs this cycle once per frame.

Video Memory Intsrface Port 9-7

B 5304804 0011752 y59 EELLC

Figure 9.5

Row and Column
Address Phases of
Memory Cycle

m Split Read Transfer. While in the display mode (C_D = 0), the L64702
performs a Split Read Transfer cycle after it detects the falling edge of
the video transfer request signal, VTRR. Split read transfers allow data
to be transferred from the DRAM core to half of the SAM while the
other half of the SAM is being clocked out. This method must be used
for real-time data transfer.

m Pseudo Write Transfer. While in the capture mode (C_D = 1), the
L64702 performs a pseudo write transfer cycle. This cycle is per-
formed in response to the detection of the falling edge of the VIRS
signal. As a result of this cycle the serial ports of the VRAM devices
are switched to input mode. In normal capture operation, VITRS occurs
once per frame.

m Alternate Write Transfer. While in the capture mode (C_D = 0), the
L.64702 performs an alternate write transfer after it detects the falling
edge of VTRR. The alternate write transfer is performed once per
video line, as indicated by VTRR.

Figure 9.5 shows the basic concept of address/data multiplexing and row/
column address multiplexing. This timing reflects the function of the cir-
cuitry shown in Figure 9.3.

Address X Data X

o \ AN /

o I
X

Row/

Column Row Addfess Column Address

Bus

VRAM

;)
State x Row Address Latched >< Column Address Latched

Address

Video Memory Interface Port 98

EM 5304804 0011753 395 MALLC

VRAM Serial Port The L64702 contains two input lines, VIRS and VIRR, which control the

Control data transfer between the VRAM serial shift register and the internal
DRAM core. The C_D bit in the SCR Register determines the direction of
the transfer. The C_D bit specifies whether the serial port of the VRAM
device is used for image capture (C_D =1) or for image display (C_D = 0).

The L64702 contains two programmable registers, Transfer Start Address
(TSA) and Transfer Increment (TT), which determine the address that is
output during the transfer cycle. The L64702 outputs all 24 bits of address
during the first three clocks of the memory cycle. External circuitry, such
as that shown in Figure 9.3, demultiplexes the row and column address
information. In addition to TSA and TI, the L64702 contains a 24-bit
Transfer Start Address Temp Register (TSAT), which holds the next trans-
fer address for the memory transfer cycle. This register is updated prior to
the update cycle.

When the L64702 is in the display mode (C_D = 0), the VRAM serial port
is in the output state, and image data are clocked out from its shift register.
The 164702 performs two types of read transfers, Normal Read Transfer
cycle (NRT) and Split Read Transfer cycle (SRT).

The NRT is designed for initializing the two halves of the shift register
with data, and the SRT is designed for clocking the data from the serial port
from one half of the shift register while transferring data from the DRAM
core to the second half of the shift register.

For proper operation, the NRT cycle should be initiated only one time at
the start of the frame or field. When the falling edge of the VIRS signal
occurs, the NRT cycle initiates. When the NRT cycle is performed, the out-
put address is the TSA value. At the end of the NRT cycle, the TSAT Reg-
ister is updated by the value of TSA + 2 * TI.

The SRT cycle should be performed periodically on a time interval equiv-
alent to the number of clocks required to clock out half the shift register.
The SRT cycle is initiated on the falling edge of the VTRR signal. When
the SRT cycle is performed, the output address is the TSAT current value.
At the end of the NRT cycle, the TSAT Register is updated by the value of
TSAT + TIL

Videa Memary Interface Port 99

M 5304804 0011754 221 EELLC

Figure 9.6 shows the transfer cycles during display mode.

Figure 9.6 —
Display Mode Serial ~ YTRS Y\
Control Timing \

VIRR l 1N 12N 12N
NRT \ SRT ;SRT SRT

MDg2.370

Table 9.2 shows an example of SRT cycles with their associated addresses.

Table 9.2 TSA =0, TI = 256

SRT Example Cycle Address
NRT 0
SRT 512
SRT 768
SRT 1024
SRT 1280

SRT nx 256

When the L64702 is in the capture mode (C_D = 1), the VRAM serial port
is in the input state, and image data are clocked into the VRAM shift reg-
ister. The 164702 performs two types of write transfers: Pseudo Write
Transfer (PWT) cycles and Alternate Write Transfer (AWT) cycles. The
PWT cycle is initiated on the falling edge of the VIRS signal, while the
AWT cycle is initiated on the falling edge of the VTRR signal.

The PWT cycle switches the VRAM serial port from an output device to
an input device. When performing a PWT cycle, no actual transfer of the
shift register to the DRAM core is performed. For proper image capture
operation, the PWT cycle should be initiated only one time at the starting
of the frame or field. When a PWT cycle is performed, the L64702 uses the
TSA value as the output address, and the TSAT uses the value of the TSA
Register.

The AWT cycle is designed for transferring the shift register into the
DRAM core, and, unlike the SRT cycle, there is no split write transfer—
the entire shift register contents are transferred during the AWT cycle. The
AWT cycle should be performed periodically on a time interval equivalent
to the number of clocks required to transfer all the image data per line into

g9-10 Video Memory Interface Port

M 5304804 0011755 18 EMLLC

the shift register. When an AWT cycle is performed, the address output is
the TSAT current value. At the end of the AWT cycle, the TSAT Register
is updated by the value of TSAT + TI.

Figure 9.7 shows the transfer cycles during display mode.

Figure 9.7 —
Capture Mode Serial ~ VTh Y\
Control Timing \
VTRR l W\ Y\ N\
PWT ; AWT \AWT ; AWT
MD82.37%
Table 9.3 shows an example of SRT cycles with their associated addresses.
Table 9.3 TSA =0, TI = 256
AWT Example Cycle Address
PWT 0
AWT 0
AWT 512
AWT 1024
AWT 1536
AWT nx 512

Video Memory Figure 9.8 shows a video-memory, early-write cycle, which takes eight

Early Write Cycle 1.64702 clocks. The 1.64702 executes video memory write cycles when it
is in the operational mode performing image decompression, or when it is
in transfer-through mode and image data are being transferred from the
system memory to the video memory. The numbered steps below corre-
spond to the annotations in the figure.

1. The address becomes active on VADB[23:0].

2. The L64702 asserts VRAS to indicate a valid row access on the row/
columns bus shown in Figure 9.3.

3. The L64702 asserts VDEN to indicate the start of data on the VADB
lines. VDEN has multiple purposes that are simultaneously operative:
it multiplexes rows or columns in external logic and it drives the OE
pin of external transceivers, such as the 74L.5245.

Video Memory Interface Port 9-11

BEm 5304804 0011756 OTu EELLC

4. VWE becomes active at the same time as VDEN and one clock before
VCAS to indicate an early write cycle.

5. VCAS is asserted one CLK cycle later to indicate a valid column

address.
6. For an early write, data are strobed into memory on the falling edge of
VCAS.
Figure 9.8
Video-Memory,
Early-Write
Operation Timing
7 | T0 T T2 T3 T4 5 6 7 T0
w AL
2
VRAS / @ / | —
VBEN / @ / —
VoA — 1 \ / —
7 ® X
VWEL1:01' \ /
VADB @ (Address X Data)
VTRIOE / | S—
DSF S 4
VTRC \ /:
VRFC \ /C:
Note:

1. VWET is not active, and stays high when the L64702 is programmed to operate in the RGBX image structure.

912 Video Memory Interface Port
e

BN 5304804 0011757 T30 MALLC

Video Memory Figure 9.9 shows a video memory read cycle, which takes eight L64702

Read Cycle clocks. The L64702 executes video memory read cycles when it is in the
operational mode performing image compression, or when it is in
transfer-through mode and image data are being transferred from the video
memory to the system memory. The numbered steps below correspond to
the annotations in the figure.

1. The address becomes active on VADB[23:0].
2. The L64702 asserts VRAS to indicate a valid row access.

3. The L64702 asserts VDEN to indicate the start of data on the VADB
lines. VDEN has multiple purposes that are simultaneously operative:
it multiplexes rows or columns in external logic and it drives external
transceivers, such as the 741.S245.

4. VTR/OE is asserted after the L.64702 3-states the VADB bus. The
external memory is expected to recognize a read cycle and to drive the
VADB bus at this point.

5. The L64702 asserts VCAS to indicate a valid column address.

6. The L64702 latches the data from VADB[23:0] on the rising edge of
the T7 CLK.

Video Memory Interface Port 9-13

B 5304804 0011758 977 EELLC

Figure 9.9
Video Memory Read
Operation Timing
} m | 0o | M | T2 | W | @ | B | W | W | M
aw/ S\ SN
VRAS —7 \® /
VDEN : : / \@)
VCAS ‘_/ — @ VA S——
VWE[1:0] : / N
VADB { Address), { Data :}
VTRIOE 7 \@ ® ——
DSF \ —
VTRC \
\
VRFC \ /:

CAS-before-RAS
Video Memory
Refresh Cycle

9-14

The execution of video refresh cycles is user-selectable. You must set the
RR field in the SCR Register to a specific valid refresh rate to initiate a
video refresh cycle. Refer to Chapter 3, “Internal Registers and Data
Tables,” for more details regarding the RR field. An internal counter with
a fixed period issues periodic requests for refresh cycles. The L64702 sup-
ports CAS-before-RAS refresh cycles only. With this scheme the L64702
telies on the internal row counter in the DRAM memory so that no refresh
address is required. The basic sequence is shown in Figure 9.10. The num-
bered steps below refer to the annotations in the figure.

1. Assertion of VCAS when VRAS is not active indicates the start of a
CAS-before-RAS refresh cycle.

2. The L64702 asserts VRAS after asserting VCAS to perform the
refresh in the external device.

3. Allother signals are 3-stated before, during, and after the refresh cycle.

Video Memory Interface Port

BN 5304804 0011759 803 MALLC

Figure 9.10
CAS-before-RAS
Memaory Refresh
Cycle
T T0 T T2 T3 T4 T5 6 7 | To
Ty A L I A AU AU AW AW AN
7 \@ ST —
/ —
VDEN
s |/ \O© —
- / S
VWE[1:0]
VADB > {
VTR/OE / \ —
DSF \ J——
VTRC \\ /L:
VRFC 7/ —
Video Memory Interface Port 3-15

B 5304804 00317k0 525 EELLC

Normal Read Normal read transfer cycles allow the L64702 to periodically refresh an
Transfer Cycle external display device connected to the video memory. This operation
DRAM-TO-SAM results in the transfer of a complete row of data from the DRAM core to
(NRT) the serial shift register. The normal read transfer cycle works in conjunc-

tion with the Split Read Transfer cycle, because the VRAM device
requires a normal read transfer cycle before any sequence of Split Read
Transfer cycles. A normal read transfer cycle transfers a complete row of
data from the DRAM to the SAM, as opposed to a Split Read Transfer that
transfers half of the row.

The Read Transfer should be initiated every start of frame and is driven by
the VTRS input signal. When the VTRS signal is asserted (LOW), the
L64702 generates an internal request for a Read Transfer Cycle. When the
request is granted the L64702 performs a Read Transfer Cycle. The
address that appears on the VADB[23:0] bus is the value loaded in the
Transfer Start Address Register (TSA). After completion of the cycle, the
L64702 increments the contents of the TSA by the value in the Transfer
Increment (TI) Register and stores the result in the Video Transfer Temp
Register. If VTRS is driven from a Vertical Sync signal, the L64702 per-
forms the read transfer cycle once per frame.

Figure 9.11 shows the timing of the memory to register cycle. The follow-
ing steps describe the operation:

The address becomes active on VADB[23:0].

2. The L64702 asserts VTR/OE to indicate the memory to register
transfer.

3. The L64702 asserts VDSF LOW, indicating a Normal Read Transfer
operation.

4. The L64702 asserts VRAS LOW. On the VRAS falling edge, external
memory may latch the row transfer address.

5. The L64702 asserts VCAS LOW. On the VCAS falling edge, external
memory may latch the column transfer address.

9-16 Video Memory Interface Port

5304804 0011761 Ybl MELLC

Figure 9.11
Normal Read
Transfer Cycle
DRAM-to-SAM
(NRT)

L)) T0 T T2 T3 T4 T5 T6 m T

a F UL
7 \®© /

As —F ~ \@

VWE[1:0]

-

VADB Address

VDSF \@

—
VIRC S/ N——
[—

VRFC \

Video Memory Interface Port 9-17

B 5304804 DOLL7?62 3T MALLC

Split Read The Split Read Transfer cycle is built into the L64702 and utilizes the
Transfer Cycle VRAM device feature of reading the video shift register as two separate
DRAM-to-SAM shift registers. While reading data from the DRAM core to one half of the
(SRT) shift register, the second shift register is clocked out. This feature provides

better utilization of the memory for display, and reduces the timing con-
straints applied to the serial port of the VRAM device without the Split
Read Transfer feature. In fact, this feature allows real time screen refresh
of display screens with a display pitch larger than the VRAM shift register
size.

A Split Read Transfer cycle is initiated on the falling edge of the VTRR
signal. Every cycle transfers data from the DRAM core to half of the shift
register, while the other part can be clocked out via the serial port of the
VRAM device. The most-significant bit of the column address determines
which half of the shift register the transfer cycle will affect. If the most-
significant bit is zero, the least-significant half of the register is accessed.

The most-significant half of the register is accessed if the most-significant
column address bit is one. The logic level of this bit is determined on the
falling edge of the VRAS signal. To maintain continuous data flow through
the serial port, VTRR must be active during the time interval between the
end of clocking one half of the register and the completion of clocking the
second half. Prior to beginning a sequence of the Split Read Transfer
cycles, the L64702 must perform a Normal Read Transfer cycle using the
VTRS signal to initialize the two halves of the shift register.

The address that appears on the VADB[23:0] bus during the Split Read
Transfer operation is contained in the Transfer Start Address Temp Regis-
ter (TSAT). After the cycle has been performed, the L64702 updates the
contents of the TSAT Register by the value of TSAT + TI. TI is the Transfer
Increment Register. Figure 9.12 shows the timing of the memory to regis-
ter cycle. The following steps describe the operation:

The address becomes active on VADB[23:0].

2. The L64702 asserts VTR/OE to indicate the memory to register
transfer.

3. The VDSF signal is asserted HIGH, indicating start of the Split Read
Transfer operation.

4. The L64702 asserts VRAS LOW. On the VRAS falling edge external
memory may latch the row transfer address.

9-18 Video Memory Interface Port

BB 5304804 0011763 23y

5. The L64702 asserts VCAS LOW. On the VCAS falling edge external
memory may latch the column transfer address.

Figure 9.12

Split Read Transfer
Cycle DRAM-to-SAM
{SAT)

] ™ T0 T T2 T3 T4 T5 T6 iy T0

VRAS

e

<
(=
m
p=a

VCAS __/I / \@ .

VWE[1:0)

VADB

A
b
S

ddress

:
I
O
m
"~
/
N
‘/

VDSF \ @ / \ —
VIRC 7/
VRFC \
\
Video Memory Interface Port 3-18

B 5304804 0011764 170 WELLC

Pseudo-Write The Pseudo-Write Transfer cycle is performed when the L64702 is in cap-

Transfer Cycle ture mode (C_D = 1). The L64702 performs this cycle when it detects the

(PWT) falling edge of VTRS. As a result of this cycle, the serial ports of the
VRAM devices are enabled and the serial port direction is switched from
output to input. No transfer of the shift register to the DRAM core is
performed.

Figure 9.13 shows the timing of the memory to register cycle. The follow-
ing steps describe the operation:

The address becomes active on VADB[23:0].

2. The L64702 asserts VWE to indicate the shift register to memory
transfer.

3. The L64702 asserts VDSF LOW, indicating a Pseudo-Write Transfer
operation.

4. The L64702 asserts VRAS LOW. On the VRAS falling edge external
memory may latch the row transfer address.

5. The L64702 asserts VCAS LOW. On the VCAS falling edge external
memory may latch the column transfer address.

9-20 Video Memory Interface Fort

BN 5304804 D011765 007 EALLC

Figure 9.13
Pseudo Write
Transfer Cycle
(PWT)

T7 T0 T T2 T3 T4 T5 T6 T T0

w £\ S

VRAS

VWE:0] / \ / —

VADB { Address }

:
E
-
\

VDSF ————— —
VIRC S/ —
VRFC \

\

Video Memory Interface Port 9-21

B 5304804 00117bb T43 EMLLC

Alternate Write The Alternate Write Transfer cycle (AWT) allows the L64702 to transfer

Transfer SAM-to- data from the VRAM shift register into the DRAM core. The 164702 per-

DRAM (AWT) forms this cycle when it is in the capture mode (C_D = 1) and detects the
falling edge of VTRR.

The address that appears on the VADB[23:0] bus during the Alternate
Write Transfer operation is contained in the Transfer Start Address Temp
Register (TSAT). After the cycle has been performed, the L64702 updates
the contents of the TSAT Register by the value of TSAT + TI. T1 is the
Transfer Increment Register.

Figure 9.14 shows the timing of the memory to register cycle. The follow-
ing steps describe the operation:
1. The address becomes active on VADB[23:0].

2. The L64702 asserts VWE to indicate the shift register to memory
transfer.

3. The L64702 asserts VDSF HIGH, indicating an Alternate Write trans-
fer operation.

4. The L64702 asserts VRAS LOW. On the VRAS falling edge, external
memory may latch the row transfer address.

5. The L64702 asserts VCAS LOW. On the VCAS falling edge, external
memory may latch the column transfer address.

9-22 Video Memory Interface Port
e

BN 5304804 00L17?L7 94T EELLC

Figure 9.14

Alternate Write

Transfer Cycle

(AWT)

T7 T0 T T2 T3 T4 T5 T6 T7 T0

e £ F
VRAS / \® /) S—
VOEN /
ViR 7 / \@ —

VWE[1:0 / \ @ / O
VADB @ { Address)

VTR/OE / \ / —
VDSF \ @/ \
VTRC i
VRFC \

Video Memory Interface Port 9-23

M 5304804 00117L8 81- EMLLC

Video Memory All previous timing assumes that the VWAIT input signal is not asserted

Cycle with Wait during the memory access cycle, which means that the memory cycles are

States executed without wait states. Assertion of VWAIT indicates to the L64702
video bus controller that external memory is not yet ready to complete a
memory cycle, and that the current cycle should be extended. Similar to the
other video control inputs, the L64702 synchronizes VWAIT with the
L64702 CLK by sampling it on each rising edge of the T2, T3, and T4
CLKs (following the falling edge of the VRAS signal). VWAIT extends
the memory cycle for all access types.

Figure 9.15 shows the basic operation of VWAIT. When the external sys-
tem asserts VWAIT LOW, the L64702 stretches the video bus cycle as long
as VWAIT remains active, and when VWAIT goes inactive again, the bus
cycle continues.

Figure 9.15
Video Memory Cycle
With Wait States

7 To L1 T2 T3 T3 T3 T4 T5 T6

ax L f L/

VRAS

VWAIT

MD§2.379

9-24 Video Memory Interface Port

B 5304804 0011769 752 ELLC

Chapter 10
System Interface Port

The system interface port transfers compressed video image data as well
as register and table data to the L64702. The system interface supports
16-bit data transfers between the external system and the L64702. The data
transfers may be performed in either the DMA transfer mode or CPU trans-
fer mode. The system interface port of the L64702 is designed to interface
as a slave port with either an external CPU or DMA Controller.

The L64702 system interface operates asynchronously with respect to the
external system; that is, the system interface signals are not related to the
164702 clock signal. SINT indicates that the L64702 has set one or more
of its unmasked interrupt flags.

Chapter 10 has two sections:

m Section 10.1, CPU Transfer Mode
m Section 10.2, DMA Transfer Mode

10.1 This section provides functional waveforms for the following CPU
CPU Transfer operations:

Mode
CPU Write to the Address Pointer Register (APR)

CPU Read from the Address Pointer Register (APR)
CPU Read from the Status Register (STS)

CPU Write to the System Mode Register (SMR)
CPU Read from the Registers and Tables

CPU Write to the Registers and Tables

CPU Read from the FIFO

CPU Write to the FIFO

System Interface Port 10-1

BN 5304804 0011770 474 EELLC

CPU Write tothe Figure 10.1 shows the CPU write cycle timing when writing to the Address

Address Pointer Pointer Register (APR). The APR is assigned to Group 0 and is accessed

Register (APR) when SRS[1:0] = 0. The L64702 uses this register to address Group 2, the
registers and tables group. The L64702 automatically increments the APR
by one after reading or writing Group 2 tables and registers. The following
sequence lists the steps the CPU must complete to write to the APR.

1. The CPU sets the SRS[1:0] lines to 00,.

2. The CPU asserts the SWR and SCS signals.
3. The CPU drives the data lines SDB[15:0].
4

. The CPU deasserts the SWR or SCS signals, indicating the end of the
write cycle.

5. The CPU stops driving the SDB[15:0] lines, and either 3-states them
or sets them to a don’t care value.

6. The CPU stops driving the SRS[1:0] lines, and either 3-states them or
sets to a don’t care value.

Figure 10.1

CPU Write to the SWR OO/
APR Register
S \® @y
SRS[1:0] ———@(G) ®
SDB{15:0) { Data)
@ @ MD52.294

CPU Read from Figure 10.2 shows the CPU read cycle timing when reading from the

the Address Address Pointer Register (APR). The APR is assigned to Group 0 and is
Pointer Register accessed when SRS[1:0] = 0. This register is used for addressing Group 2,
(APR) the registers and tables group. The L64702 automatically increments the

APR by one after reading or writing the Group 2 tables and registers. Read-
ing the APR Register yields the current value of this register. The follow-
ing sequence lists the steps the CPU must complete to read the APR.

1. The CPU sets the SRS[1:0] lines to 00,.
2. The CPU asserts the SRD and SCS signals.

102 System Interface Port

B 5304804 0011771 300 EELLC

3. The L64702 begins to drive the data lines SDB[15:0] with the current
value of the APR Register. At this point the data output from the
L64702 are not yet stable or valid.

4. After a register access delay period, the data lines SDB[15:0] contain
a valid value for the APR Register.

5. The CPU stops driving the SCS, SRD, and SRS[1:0] signals to indicate
the end of the APR read cycle.

6. The L64702 stops driving the SDB[15:0] lines, and then either 3-states
them or sets them to a don’t care value.

Figure 10.2
CPU Read from the SRD \ @ ®/.: \
APR Register
s~ \@ O\
O
SRS[1:0] — 00 —
SDB[15:0] —— @_ A validdata)
i i(a) | @
System Interface Port 10-3

EE 5304A04 0011772 2u? EMLLC

CPU Read from
the Status
Register (STS)

Figure 10.3
CPU Read from the
STS Register

10-4

Figure 10.2 shows the CPU read cycle timing when reading from the Sta-
tus Register (STS). The Status Register (STS) is assigned to Group 1 and
is accessed when SRS[1:0] = 1. The Status Register is a read-only register.
Any attempt to write to this address changes the content of the SMR Reg-
ister, which resides at the same address. The STS read cycle is internally
synchronized with the L64702 clock, which requires the read cycle
active-LOW interval to be a minimum of five clocks, and the read recovery
time interval to be a minimum of one clock. Once a read cycle begins, the
contents of the STS Register on the SDB bus are not allowed to change
even if the internal L64702 status changes during the read cycle. STS rep-
resents the status of the L64702 at the beginning of the read cycle. The fol-
lowing sequence lists the steps the CPU must complete to read from the
STS:

1. The CPU sets the SRS[1:0] lines to 015.

2. The CPU asserts the SRD and SCS signals for a minimum of five
clocks.

3. The L64702 begins to drive the data lines SDB[15:0] with the current
value of the STS Register. At this point the data output from the
L64702 are not yet stable or valid.

4. After a register access delay period, the data lines SDB[15:0] contain
a valid value for the STS Register.

5. The CPU deasserts the SCS, SRD, and SRS signals for a minimum of
one clock, indicating the end of the STS read cycle.

6. The CPU stops driving the SDB[15:0] lines, and either 3-states them
or sets them to a don’t care value.

«——— 5CLKs ——»= =1 0K-»>
SRD A\ @ ® \
s \2 ® \

SRS[1:0] —®(o
SDB(15:0] O (Statéus Ve

System Interface Port

B 5304804 0011773 143 EELLC

CPU Write tothe Figure 10.4 shows the CPU write cycle timing when writing to the System

System Mode Mode Register (SMR). The System Mode Register (SMR) is assigned to

Register (SMR) Group 1 and is accessed when SRS[1:0] = 1. The SMR Register is a
write-only register, so any attempt to read from the SMR results in reading
the STS Register, because the STS Register resides at the same address.

The SMR write cycle is internally synchronized with the L64702 clock,
which requires the write-cycle, active-LOW interval to be a minimum of
one clock, and the write recovery time interval to be a minimum of five
clocks. The data value on the SDB bus is strobed into the 164702 on the
LOW-to-HIGH transition of the SWR signal. The following sequence lists
the steps the CPU must complete to write to the SMR:

1. The CPU sets the SRS[1:0] lines to 01,.

2. The CPU asserts the SWR and SCS signals for minimum of one clock
cycle.

3. The CPU drives the data lines SDB[15:0].

4. The CPU deasserts the SWR or SCS signals for a minimum write
recovery time of five clocks, indicating the end of the SMR write
cycle.

5. The CPU stops driving the SDB[15:0] lines, and either 3-states them
or sets them to a don’t care value.

6. The CPU stops driving the SRS[1:0] lines, and then either 3-states
them or sets them to a don’t care value.

Figure 10.4 't 1[Ik — > —————— 50Ks ———————»
CPU Write to the
SMR Register SWR \@ @/ AN
5CS \@ ®y _
® ®
SRS[1:0] ——— 01
$D8[15:0] Data
®_'J@ MDs2.297
System Interface Port 10-5

" @M 5304804 0011774 0LT EALLC

CPU Read from
the Registers and
Tables

Figure 10.5
CPU Read from the
Registers and Tables

10-6

Figure 10.5 shows the CPU read cycle timing when reading from the con-
figuration registers and JPEG tables contained within the L.64702. These
registers and tables are assigned to Group 2 and are accessed when
SRS[1:0] = 2. Each 16-bit word within Group 2 is located at a unique
address in the L64702. Prior to the execution of a Group 2 read cycle, you
must load the APR Register with the address of the first register or table
location to be accessed. With each LOW-to-HIGH transition of the SRD
signal, the L64702 increments the APR address information by one, so that
the subsequent read cycle accesses the next sequential register or table
location.

The following sequence lists the steps the CPU must complete to read the
Group 2 registers and tables.

1. The CPU sets the SRS[1:0] lines to 105.
2. The CPU asserts the SRD and SCS signals.

The L64702 begins to drive the data lines SDB[15:0] with the current
value of the Group 2 register or table being accessed. At this point the
data output from the L64702 are not yet stable or valid.

4. After adelay period, the data lines SDB[15:0] contain a valid value for
the register or table pointed to by the APR Register.

5. The CPU deasserts the SCS, SRD, and SRS signals, indicating the end
of the read cycle. The APR increments by one.

6. The L64702 stops driving the SDB[15:0] lines, and then either 3-states
them or sets them to a don’t care value. To perform the next sequential
read, repeat the above steps. The APR Register does not need not be
reinitialized.

w2 &\

O _ a
SRs[1:0] — 10 — 10
SDB[15:0] @ Data[N} Data[N]
APR Reg —— APRvalue =N X APRvalue =N +1

: MD32.298

System Interface Port

B 5304804 0011775 TSL EELLC

CPU Write tothe Figure 10.6 shows the CPU write cycle timing when writing to the config-

Registers and uration registers and JPEG tables contained within the L.64702. The write

Tables cycle is similar to the read cycle in that you must load the APR Register
with the address location of the table or register to be written. The L.64702
increments the APR by one on every LOW-to-HIGH transition of the SWR
signal. The following sequence lists the steps the CPU must complete to
write the Group 2 registers and tables.

1. The CPU sets the SRS[1:0] lines to 10,.

2. The CPU asserts the SWR and SCS signals.
3. The CPU drives the data lines SDB[15:0].
4

. The CPU deasserts the SCS and SRD signals, indicating the end of the
write cycle. The APR increments by one.

5. The CPU stops driving the SDB[15:0] lines, and then either 3-states
them or sets them to a don’t care value.

6. The CPU stops driving the SRS[1:0] lines, and then either 3-states
them or sets them to a don’t care value. To perform the next sequential
read, repeat the above steps. The APR Register does not need not be

reinitialized.
Figure 10.6 - ; ;
CPU Write to the Wi @ &/ \
Registers and Tables
SCS \ @ ®/; \
DI
SRS[1:0] —O(10)©——(10
SDB(15:0} ®J\ Déta) ®
APR Reg APRvalue =N H APRvalue=N+1
! ' ! MD92.299
System Interface Port 10-7

B 5304804 001177k 992 MELLC

CPU Read from Figure 10.7 shows the CPU read cycle timing when reading the L64702
the FIFO FIFO. The Group 3 FIFO is read either during compression or in read-
through mode.

The L64702 is operating in the data compression mode when ENC = 1,
SRS[1:0] = 3, and the START bit in the SMR Register is set. With this
setup, the CPU can read compressed data from the FIFO and then write it
into system memory.

When ENC = 1 and the TRTH bit is set to one, the L64702 is in the read-
through mode.

Bits in the SMR and STS Registers allow you to monitor the FIFO empty
or FIFO full conditions. Before accessing the FIFO, you must initialize the
burst level and check for the valid condition to start reading the FIFO.
Refer to Section 3.5, “Group 3 FIFO,” for more information on accessing
the internal FIFO.

The following sequence lists the steps the CPU must complete to read the
FIFO when the valid conditions for reading the FIFO are met:

1. The CPU sets the SRS[1:0] lines to 115.
2. The CPU asserts the SRD and SCS signals.

The L64702 begins to drive the data lines SDB[15:0] from the FIFO.
At this point the data output from the L64702 are not yet stable or

valid.

4. After adelay period, the data lines SDB[15:0] contain a valid value for
the FIFO compressed data.

5. The CPU deasserts the SCS, SRD, and SRS signals to indicate the end
of the FIFO read cycle.

6. The L64702 stops driving the SDB{15:0] lines, then 3-states them.

Figure 10.7

CPU Read from the s \@
FIFO
s\
®_
SRS[1:0] — 11
SDB[15:0] @' o Data
MD92.300

10-8 System Interface Port

M 5304804 0011777 &29 ERLLC

CPU Write to the
FIFO

Figure 10.8
CPU Write to the
FIFO

Figure 10.8 shows the CPU write cycle timing when writing the L64702
FIFO. The Group 3 FIFO is written to either during decompression on in
write-through mode.

The L64702 operates in the data decompression mode when ENC =0,
SRS[1:0] = 3, and the START bit in the SMR Register is set. With this
setup, the CPU can write decompressed data to the FIFO from the system
memory.

When ENC = 0 and the TRTH bit is set to one, the 1L.64702 is in the write-
through mode. ’

Bits in the SMR and STS Registers allow you to monitor the FIFO empty
or FIFO full conditions. Before accessing the FIFO, you must initialize the
burst level and check for the valid condition to start reading the FIFO.
Refer to Section 3.5, “Group 3 FIFO,” for more information on accessing
the internal FIFO.

The following sequence lists the steps the CPU must complete to write the
FIFO when the valid conditions for writing the FIFO are met:

1. The CPU sets the SRS[1:0] lines to 115.

2. The CPU asserts the SWR and SCS signals.

3. The CPU drives the data lines SDB[15:0] with decompressed data to
be written into the FIFO.

4, The CPU deactivates SWR or SCS, which indicates the end of the
write cycle.

5. The CPU stops driving the SDB[15:0] lines, and then either 3-states
them or sets them to a don’t care value.

6. The CPU stops driving the SRS[1:0] lines, and then either 3-states
them or sets them to a don’t care value.

—\@ @g——\
@ ©—\
—®< ‘ —

®

SWR
ScS

SRS[1:0)

1)—

SDB[15:0] { Data)

MDS2.301

System Interface Port 10-9

B 5304804

0011778 765 ERLLC

10.2
DMA Transfer
Mode

This section provides functional waveforms for the following CPU
operations:

m DMA Write Operation
m DMA Read Operation

DMA Write
Operation

Figure 10.9
DMA Write Cycle
Timing

10-10

Figure 10.9 illustrates a typical DMA write cycle. A DMA write cycle is
defined as a read from system memory using the DMA controller’s
memory-mapped read signal, and a write to the L64702 using the DMA
controller’s I/O-mapped write signal. The read and write are simultaneous,
performed under the direction of the DMA controller. A DMA write oper-
ation may consist of transfers to either Group 2 tables and registers or to
the Group 3 FIFO. The following sequence lists the steps that take place
during a DMA write operation:

1. The L64702 asserts SDRQ to indicate that the L64702 is requesting
DMA service.

2. The DMA controller asserts the L64702 SDACK signal to acknowl-
edge the request and activate SWR to start the write cycle.

3. The datathat has been read from system memory are then presented on
SDB[15:0] with sufficient setup time prior to the rising edge of SWR.

4. The DMA controller writes data to the L64702 by asserting SWR. The
rising edge of SWR causes data to be written to the 164702 and indi-
cates the end of the DMA transfer. SDACK may be deasserted or stay
asserted for the next write cycle.

5. The DMA controller retains valid data on SDB[15:0] for the required
hold time after the rising edge of SWR.

R | \@ O\
SDACK _\@ ® | \

SDRQ ®/

[

SDB[15:0] { Data) —

System Interface Port

B 5304804 DD11779 LTI MLLC

DMA Read Figure 10.10 illustrates a typical DMA read cycle. A DMA read cycle is

Operation defined as aread from the L64702 using the DMA controller’s /O-mapped
read signal and a write to system memory using the DMA controller’s
memory-mapped write signal. The read and write are simultaneous, per-
formed under the direction of the DMA controller. A DMA read operation
may consist of transfers from either Group 2 tables and registers or from
the Group 3 FIFO. The following sequence lists the steps that take place
during a DMA read operation.

1.

Figure 10.10
DMA Read Cycle
Timing

SDACK \@ ®,

The L64702 asserts SDRQ, indicating that the L64702 is requesting
DMA service.

The DMA controller asserts the SDACK signal to acknowledge the
request and activates SRD to start the read cycle.

. The L64702 starts to drive data onto the SDB[15:0] bus. At this time

the data from the 164702 are not yet valid.
After a sufficient data access delay, valid data appear on the SDB bus.

On the rising edge of SRD, the read operation is complete, indicating

the end of the DMA read cycle. The DMA controller then writes the

data just read from the L64702 into system memory. SDACK may be
deasserted or stay asserted for the next read cycle.

The data that is output from the L64702 stay valid for the required hold
time after the rising edge of SRD.

w & O\
T\

SCS
® ®
SDB[15:0] L Data L T Data
! 7 ! MD92.306
System Interface Port 10-11

BN 5304804 DO11780 313 EELLC

Chapter 11
System Software Control

This chapter summarizes the 164702 main control and status bits, which
allow an easy interface between your software driver and the chip. The
concept is basically similar to the interface between slave peripheral
devices and a CPU or DMA controller in a PC system environment. The
software driver that interfaces with the 1.64702 uses polling, interrupts,
and DMA channel transfers for initializing the L64702 as well as monitor-
ing the compression and decompression tasks. Flowcharts of the control
program are provided for both compression and decompression.

This chapter contains three sections:

m Section 11.1, Initialization Task
m Section 11.2, Image Compression Task

m Section 11.3, Image Decompression Task

11 The L64702 is in the initialization mode when you set the INIT bit in the
Initialization SMR Register and set the INIT flag in the STS Register. Either CPU or
Task DMA service can initialize the L64702. To initiate DMA service, set the

DE bit in the SMR Register. The APR Register should be pre-initialized to
the start address in Group 2 to make sure that the initialization data are
written in the correct location. During image compression or decompres-
sion operation, occasional breaks in operation may be required to repro-
gram the L.64702 tables or registers. Simply reset the START bit in the
SMR Register to pause the operation. As a result of this pause, the L64702
sets the INIT flag in the STS Register. After the INIT flag is set, you can
set the INIT bit in the SMR Register, which allows access to Group 2.
Reading from Group 2 during operation is useful for testing and debugging
purposes.

Do not write to Group 2 while operation is paused. You may change the
initial values of tables or registers, and thus violate the operation in

System Software Control 11-1

B 5304404 0011781 25T MEALLC

progress, causing a data stream breakdown and corruption of the results.
You must handle carefully the changing of tables and registers during
operation.

The L64702 initialization procedure using the CPU transfer mode is out-
lined in the following steps:

Step 1. Read the INIT bit in the STS Register.

Step 2. IfINIT =1 then continue to Step 3, or else go back to Step 1.
Step 3. Set the INIT bit in the SMR Register.

Step 4. Write the start address to the APR Register.

Step 5. Write the necessary initialization words to Group 2.

Step 6. Repeat Steps 4 and 5 until initialization is finished.

The L64702 initialization procedure using the DMA transfer mode is out-
lined in the following steps:

Step 1. Read the INIT bit in the STS Register.

Step 2. If INIT = 1 then continue to Step 3, or else go back to Step 1.
Step 3. Initialize the system DMA Controller.

Step 4. Set the INIT and DE bits in the SMR Register.

Step 5. Write the start address to the APR Register.

Step 6. Wait for the TC interrupt from the DMA Controller.

Step 7. Repeat Steps 5 and 6 until initialization is finished.

1.2 Figure 11.1 shows a sample program flowchart that uses the L64702 inter-
Image nal status flags and interrupt pin to control the flow of compressed data out
Compression of the L64702 FIFO.

Task

The program uses the CPU for data transfer between the L64702 and the
external system memory and shows how the L64702 interrupt pin hand-
shakes with the CPU. The program first initializes the internal registers and
tables, and then enables the proper interrupt bits in the SMR Register—in
this case the THR and LCIF bits. After initializing the L64702, set the
START bit, and the L.64702 starts compression operation.

11-2 System Software Control

BN 5304804 0011782 19k MLLC

Figure 11.1

Compression

Program Flow

Example INIT
Registers & Tables

!

»| Enable Interrupts
THR & LCIF

!

Set
START Bit

Enable Interrupts
THR & LCIF

A

Start
Interrupt Routine

Disable Interrupts
THR & LCIF

!

| Read STS Register |

Yes Yes

Read Out FIFCNT Read Out FIFCNT

I Software Reset | Words from the Words from the
FIFO FIFO

A

Yes Next
Image

No

System Software Control 11-3

B 5304804 0011783 022 MALLC

When the external CPU receives an interrupt, the program jumps to the
interrupt service routine, which determines what to do based on the state
of the THR and LCIF bits of the STS Register.

If the L.64702 sets the THR bit in the STS Register during compression, the
CPU is interrupted and reads the number of words currently stored in the
FIFO. The number of words read is equal to the value specified by the
FIFCNT field in the STS Register.

When the CPU detects the L64702 LCIF interrupt, it signifies that the
L.64702 has written the last codeword into the FIFO. The CPU reads a
number of words equal to the value of FIFCNT in the STS Register, and
then becomes ready to compress the next image.

If compression of the next image is required, a software reset is performed
by setting the RST bit in the SMR Register.

113 Figure 11.2 shows a sample program flowchart that uses the L64702 inter-
Image nal status flags interrupt pin to control the flow of compressed data into the
Decompression L.64702 FIFO.

Task

The program uses the CPU for data transfer between the L64702 and the
external system memory. The program flow shows how the L64702 inter-
rupt pin handshakes with the CPU. The program first initializes the internal
registers and tables, and then enables the proper interrupt bits in the SMR
Register—in this case the THR and the EOI bits. After initializing the
device, set the START and the L64702 starts decompression.

When the external CPU receives an interrupt, the program jumps to the
interrupt service routine, which determines what to do based on the status
of the THR and EOI bits of the STS Register.

During decompression, the L64702 sets the THR bit periodically, which
interrupts the program. The EOI bit also interrupts the program, but only
once at the end of the compressed image. The CPU transfers to the FIFO
the exact number of words specified by the FIFCNT level—no more words
beyond this level should be transferred per burst transfer.

When the L64702 has detected the EOI marker in the code data stream, it
sets the EOI bit, which generates a CPU interrupt. The L64702 then con-

cludes decompression of the current image. The L64702 ignores any addi-
tional transfers to the FIFO after the EOI bit is set.

114 System Software Control

B 5304804 0011784 TEY9 EELLC

Figure 11.2
Decompression
Program Flow

Example INIT
Registers & Tables

v

| Enable Interrupts
o THR & EOI

Y

Set
START Bit

Enable Interrupts
THR & EOI

¥

Start
Interrupt Routing

Disable Interrupts
THR & EOI

I Read STS Register I

Read out FIFCNT
Words from the
FIFO
I Software Reset | | Read STS Register I<
A
MD92.360
System Software Control 11-5

BE 5304804 0011785 975 EELLC

11-6

The EOA flag indicates that .64702 has finished decompression of the
current image and that the L64702 is ready for the next image. If the CPU
continues to decompress, the CPU can set the RST bit in the SMR Register.
Setting this bit issues a software reset to the L64702. The CPU may then
return to the same decompression procedure as for the previous image.

System Software Control

B 5304804 DOL178L 831 HELLC

Chapter 12
Specifications

This chapter specifies the L64702 electrical and mechanical characteris-
tics. Note that all specifications are preliminary and subject to change.

This chapter is divided into three sections:

B Section 12.1, AC Timing
m Section 12.2, Electrical Requirements

m Section 12.3, Packaging

12.1 This section presents AC timing information for the L64702 JPEG Copro-

AC Timing cessor. The timing relationships between various signals are depicted in
Figures 12.1 through 12.9. The figures depict the following timing
relationships:

Figure 12.1, L64702 CLK Timing

Figure 12.2, L64702 RESET Timing

Figure 12.3, CPU Write Cycle Timing

Figure 12.4, CPU Read Cycle Timing

Figure 12.5, CPU Write Cycle to the SMR Register

Figure 12.6, CPU Read Cycle from the STS Register

Figure 12.7, DMA Write Cycle Timing

Figure 12.8, DMA Read Cycle Timing

Figure 12.9, Video Port Timing

The numbers in Figure 12.1 through Figure 12.9 refer to the timing param-
eters listed in the first column of Table 12.1. Table 12.1 lists the AC timing
values for the signals.

Specifications 12-1

B 5304804 0011787 778 EELLC

Table 12.1 33 MHz
AC Timing Values Parameter Description Min Max Units
Clock and Reset Timing
Lt CLK Cycle 30 ns
2. tep CLK High Duration 14 ns
3. tey CLK Low Duration 14 ns
4. tcp CLK Rise Time 10 ns
5. teg CLK Fall Time 10 ns
6. try RESET High Duration 2*te ns
7. tovp RESET- to Valid Outputs 20 ns
CPU Write Cycle Timing
8. tsrwsi SRS Setup before SWR- 5 ns
9. tpwHL SRS Hold from SWR+ 2 ns
10. tegwsi SCS- Setup before SWR- 0 ns
11. teswhi SCS+ Hold from SWR+ 0 ns
12. tgwwi SWR Pulse Width 22 ns
13. tgwry SWR Recovery Time 22 ns
14. tgpwsi SDB Setup before SWR+ 22 ns
15. tspwHI SDB Hold from SWR+ 5 ns
CPU Read Cycle Timing
16. tgpgrs1 SRS Setup before SRD- 5 ns
17. torrH1 SRS Hold from SRD+ 2 ns
18. tegrsi SCS- Setup before SRD- 0 ns
19. tesrui SCS+ Hold from SRD+ 0 ns
20. tgpw1 SRD Pulse Width 22 ns
21. tgpp SRD Recovery Time 22 ns
22. tgpai SDB Output Valid Delay from SRD- 26 ns
23. tspru1 SDB Hold from SRD+ 10 ns
CPU Write Cycle to SMR Register
24. tgpws2 SRS Setup before SWR- 5 ns
25. tsgwnz SRS Hold from SWR+ 2 ns
26. tcgws2 SCS- Setup before SWR- 0 ns
27. tcswhz SCS+ Hold from SWR+ 0 ns
28. tsww? SWR Pulse Width te ns
29. tywro SWR Recovery Time A ns
30. tspws2 SDB Setup before SWR+ 22 ns
31. tspwgz SDB hold from SWR+ 5 ns

(Sheet 1 of 2)

122 Specifications

5304404 0011788 bLOY EALLC
Table 12.1 (Continued) 33 MH:
AC Timing Values Parameter Description Min Max Units

CPU Read Cycle from STS Register

32. tsgrrs2 SRS Setup before SRD- 5 ns
33. tgrrH2 SRS Hold from SRD+ 0 ns
34. tesrse SCS- Setup before SRD- 0 ns
35. tespm SCS+ Hold from SRD+ 0 ns
36. tgpaz SDB Output Valid Delay from SRD- 3t +26 ns
37. tspruz SDB Hold from SRD+ 10 ns
38. tgrw2 SRD Pulse Width 5%t ns
39. tgrr2 SRD Recovery Time te ns
DMA Write Cycle
40. tagws SDACK Setup before SWR- 0 ns
41. taxwn SDACK Hold from SWR+ 3 ns
42. tswws SWR Pulse Width 22 ns
43, tgwra SWR Recovery Time 22 ns
44, tgpwsa SDB Setup before SWR+ 22 ns
45. tgspwys SDB Hold from SWR+ 5 ns
DMA Read Cycle
46. takrs SDACK Setup before SRD- 0 ns
474y SDACK Hold from SRD+ 3 ns
48, {SRwW3 SRD Pulse Width 22 ns
49. tgrRr3 SRD Recovery Time 22 ns
50. tgpas SDB Output Valid Delay from SRD- 26 ns
51. tsprH3 SDB Hold from SRD+ 10 ns
Video Port Timing
52, tyrw Video Input Signal Active Duration 2%t ns
33. tyop Video Valid Output Signal Delay from 20 ns
CLK
54. tyas VADB Input Setup 0 ns
55. tyay VADB Input Hold 6 ns
(Sheet 2 of 2)
AC Timing 12-3

B 5304404 0011789 540 EALLC

CLK and RESET Figure 12.1 and Figure 12.2 show the waveforms associated with the

Timing L64702 CLK and RESET signals.
Figure 12.1 - 1 >
L64702 CLK Timing - 2 3 — 4 5
CLK)
MD92.382
Figure 12.2
164702 RESET Timing
MD92.383
System Port The following waveforms are associated with the L64702 system port
Timing interface. The waveforms shown are the CPU Write Timing Cycle, CPU

Read Timing Cycle, CPU Write Cycle to the SMR Register, CPU Read
STS Register Timing Cycle, DMA Write Cycle, and DMA Read Cycle.

CPU Write Timing Cycle

Figure 12.3 illustrates the CPU write cycle timing when writing to the
Code-FIFO, Group 2 tables and registers, and the APR Register. The CPU
write to the Group 1 SMR Register has special timing considerations,
which are illustrated later in Figure 12.5.

12-4 Specifications

5304804 0011790 2b2 EELLC

Figure 12.3 8

CPU Write Cycle > 9
Timing SAS{1:0] [0,23] [0,2,3]

e —— 12 —t— 13

SWR \ / /
SRD
—! 15
- " '
MD32.384
CPU Read Timing Cycle

The CPU read cycle from the Code-FIFO, Group 2 tables and registers,
and the APR Register is illustrated in Figure 12.4. The CPU read cycle
from the Group 1 STS Register has special timing considerations, which
are illustrated later in Figure 12.6.

Figure 12.4 16

CPU Read Cycle > v
Timing SRS[1:0] [0,23] [0,23]
18 |ee—

[— 20 —re—— 21

SDB[15:0]

AC Timing 12-5

B 5304804 0011791 179 BELLC

Figure 12.5
CPU Write Cycle to
the SMR Register

Figure 12.6
CPU Read Cycle
from the STS
Register

12-6

CPU Write Cycle to the SMR Register

The CPU write cycle associated with the Group 1 SMR Register is illus-
trated in Figure 12.5.

24

SRS[1:0]

M

i1l

—>25X—

{1

21

26 [-— |
SCS
l—— 28 —— 29
SWR \ / {
SRD
—p 31
<D
SDB(15:0]

CPU Read STS Register Timing Cycle

Figure 12.6 illustrates the CPU read cycle timing associated with the
L64702 STS Register.

MD92.386

SRS[1:0]

[0,2,3]

X

[0.2,3]

r—— 38 —»

reat—— 39

Specifications

5304804 0011792 035 E@ALLC

DMA Write Cycle Timing
Figure 12.7 illustrates the DMA write cycle timing.

Figure 12.7 41
DMA Write Cycle 0=
Timing SDACK
[—— J) —l—— 43
SWR \ A (
SRD
—>{ 45
- M -
SDB[15:0] :>_
MD92.388
DMA Read Cycle Timing

Figure 12.8 illustrates the DMA read cycle timing.

Figure 12.8

DMA Read Cycle % -
Timing SDACK

e—— 48 —>tt— 249

SRD \ /

—> 51>r‘__< _>£ m

Video Port Timing Figure 12.9 provides the waveforms of the L64702 Video Port. The
VWAIT, VBACK, VTRR, and VTRS inputs are internally synchronized
and should be active for a minimum of two clock cycles. All outputs are
delayed from the rising edge of CLK. The cycle where the signal becomes
active or inactive is according to the description given in Chapter 10,
“Video Memory Interface Port.” The outputs in the figure are: VBRQ,
VCAS, VRAS, VTR/OE, VWR, VDSF, and VDEN.

15

SWR

SDB[15:.0]

AC Timing 12-7

B 5304804 0011793 T71 EALLC

Figure 12.9
Video Port Timing CLK /—_\—/ /___/__\—_
E 52 }

=

<]
log]
|
[
~

5

3

<
>
o
@

Outputs Valid
12.2 This section specifies the electrical requirements for the L64702. Four
Electrical tables list electrical data in the following categories:
Requirements .)
m Absolute Maximum Ratings—Table 12.2
® Recommended Operating Conditions—Table 12.3
m Capacitance—Table 12.4
m DC Characteristics—Table 12.5
m Pin Description Summary—Table 12.6
Table 12.2 Symbol Parameter Limits' Unit
';gfil‘;’”ste Maximum DC Supply 0310 +7 v
g ViN Input Voltage -0.3 to VDD +0.3 v
In DC Input Current 10 mA
Tstg Storage Temperature Range (Plastic) -40 to +125 °C
1. Referenced to VSS
Table 12.3 Symbol Parameter Limits Unit
Z“e‘ﬁa"l,-’ﬁe",;"f,f’ s VoD DC Supply 447510 4525 V
p g Ty Ambient Temperature 0 to +50 °C
Table 124 Symbol Parameter’ Min Typ Max Units
Capacitance Cy Input Capacitance 15 pF
Cout Output Capacitance 20 pF
Cio I/O Bus Capacitance 20 pF
1. Measurement conditions are Vi = 5.0 V, Ty = 25°C, and clock frequency = 1 MHz.
12-8 Specifications

M 5304804 001179y 908 WLLC

Table 12.5
DC Characteristics
Symbol Parameter Condition! Min Typ Max Units
Vi Voltage Input Low - - 08 V
Vi Voltage Input High 2.0 - - v
Vou Voltage Output High Ioy = -4.0 mA 24 45 - v
VoL Voltage Output Low Io, = 4.0 mA - 01 04 V
Iy Current Input
CMOS, TTL Inputs Vpp=Max, Vly=VpporVgs -10 #1 10 pA
Inputs with Pulldowns Vpp = Max, Vi = Vpp 55 120 200 pA
Inputs with Pullups Vpp = Max, Vi = Vs -60 -105 -185 pA
Ioz Current 3-State Output Leakage ~ Vpp = Max, Voyr=Vggor Vpp -10 #1 10 pA
s Qo U U Sy Vv, 0 - o
o Game Ml QUPUSIT Vo= Max Vour=Vop 0~ 105 ma
Ipp Quiescent Supply Current Vv = Vpp or Vgg - - 10 mA
Icc Dynamic Supply Current® Vpp = Max, f=33 MHz - 320 - mA

1. Specified at Vpp equals 5V + 5% over the specified ambient temperature range.

2. Not more than one output may be shorted at a time for a maximum duration of one second.

3. Typical Icc can be calculated from the following formula: I~ = 125 mA + (5.75 mA /f), where 125 mA is the

static RAM current and f is the clock frequency.

Electrical Requirements

12-9

B 5304604 0011795 84y EELLC

Table 12.6 Drive
Pin Description Mnemonic Description Type (mA) Active
Summary CLK Clock Tnput -
RESET Reset Input High
SCS System Chip Select Input Low
SDACK System DMA Acknowledge Input Low
SDB[15:0] System Data Bus 3-State Bidirectional 4
SDREQ System DMA Request Output 4 High
SINT System Interrupt Request Output 4 Low
SRD System Read Input Low
SRS[1:0] System Register Select Input
SWR System Write Input Low
VADB[31:0] Video Address and Data Bus 3-State Bidirectional 4
VBACK Video Bus Acknowledge Input Low
VBRQ Video Bus Request Output 4 Low
VCAS Video Memory Column Address 3-State Output 4 Low
Strobe
VDEN Video Bus Data Enable 3-State Output 4 Low
VDSF Video Special Function 3-State Output 4 High
VRAS Video Memory Row Address 3-State Output 4 Low
Strobe
VRFC Video Refresh Cycle 3-State Output 4
VTRC Video Transfer Cycle 3-State Output 4
VTRR Video Transfer Request Input Low
VIRS Video Transfer Reset Input Low
VTR/OE Video Data Transfer and 3-State Output 4 Low
Output Enable
VWAIT Video Bus Wait Input Low
VWE[1:0] Video Write Enable 3-State Output 4 Low

12-10 Specifications

B 5304804 001179k 740 EELLC

12.3 This section contains three types of information for the 100-pin PQFP: an

Packaging alphabetical pin list (Table 12.8), a pinout (Figure 12.10), and a mechanical
drawing (Figure 12.11). Table 12.7 lists the ordering number for the
L64702.

Table 12.7 Clock

164702 Ordering Frequency

Information Order Number (MHz) Package Type Operating Range
L64702QC-33 33 100-pin PQFP Commercial

When you order the L64702, you receive free of charge a 3 1/2” PC-format
diskette with the Huffman Table source code (see Appendix B). The Huff-
man Table diskette is included free with your first L64702 order. Addi-
tional diskettes may be ordered by calling 800.828.4LS1 extension 7468.
You may also download the Huffman Table source code from the LSI bul-
letin board by calling 408.433.7578.

Packaging 12-11

B 5304804 0011797 bl7 EELLC

Table 12.8 Signal Pin Signal Pin Signal Pin Signal Pin
'gf?:f",gg%ﬁ'%ﬁ CLK 67 VADB6 99 VDD 20 VWED 87

RST 74 VADB7 100 VDD 28 VWEI 86

SCS 73 VADBS 1 VDD 29 reserved’ 57

SDACK 75 VADB9 5 VDD 41 reserved 71

SDBO 36 VADBIO 6 VDD 52

SDB1 37 VADBI11 7 VDD 53

SDB2 38 VADBI12 8 VDD 68

SDB3 39 VADBI3 9 VDD 78

SDB4 40 VADB14 10 VDD 79

SDB5 43 VADBI5 13 VDD 90

SDB6 44 VADB16 14 VDEN 84

SDB7 45 VADB17 15 VDSF 83

SDB8 46 VADB18 16 VRAS 89

SDBY 47 VADB19 17 VREC 58

SDBI0 48 VADB20 18 VSS 4

SDB11 49 VADB21 21 VAN 12

SDB12 50 VADB22 22 VSS 19

SDB13 51 VADB23 23 AN 27

SDB14 55 VADB24 24 VSS 35

SDB15 56 VADB25 25 VSS 42

SDREQ 64 VADB26 26 VSS 54

SINT 81 VADB27 30 VSS 60

SRD 72 VADB28 31 VS§S 66

SRSO 65 VADB29 32 VSS 77

SRS1 69 VADB30 33 VA 85

SWR 70 VADB31 34 vSS 91

VADBO 92 VBACK 61 vSS 96

VADBI 93 VBRQ 62 VIRC 59

VADB2 94 VCAS 88 VIRR 76

VADB3 95 VDD 2 VIRS 80

VADB4 97 VDD 3 VIR/OE 82

VADBS 98 VDD 11 VWAIT 63

1. Leave all reserved pins unconnected.

12-12 Specifications

B 5304804 0011798 553 MLLC

£18as
QaA
aaa
SSA
1908
51808
paniasey
J4HA
JUIA
SSA
AIVEA
oH8A
LVMA
034as
0SHS
SSA

b M
aaa
LSYS
S
paalasay
aus
5
1SY
Avas
HALA
SSA
adaa
aaa
SUIA

100-Pin POFP Pinout

Figure 12.10

N 523
— = v— D 0 - © O ST MmN - O o m o m
N - -)
oooooooawuoccnaocnaLd L
NLDAADDANZIZILNDDNANSS>>
8
HARAAAARAAAAAAARARAR ¢
=
BRITEIIIIILRHEBBIZNES
1S 0
s 62
€5 8z
4] Z
o] 114
9 ST
{S 14
85 €
[[£4
09 1z
19 0z
29 6l
€9 8l
1 Ll
<9 9l
99 Sl
9 i
89 €l
69 <l
174 18
1L ol
[43 m 6
: =
»
St .W 9
9 c §
173 | 14
8¢ €
6L [4
08 I
7

SERIREERTRSHNRIRRERSS

LZ90VA
agA
aaa
SSA
928avA
SZAOVA
¥280VA
£2890vA
ZAAVA
1Z9avA
Q0A
SSA
0Z8QVA
6190VA
8180OVA
£180VA
918avA
SL8avA
SSA
QaaA
FLEAQVA
€L80VA
Z189avA
1L8avA
oLaava
680vA
SSA
aaa
QaaA
8HAVA

12-13

Packaging

B 5304404 D0LL?99 49T EELLC

Figure 12.11

100-Pin PQFP
Mechanical Drawing
Top View Side View
- D — _
- 0 L Dimension | mm
e D3 > A [Max 1340
BP 5'1 A1 Min | 025
? "~ No.ofPins=30 T
ﬂ n ﬂ ﬂ n ﬂ Min 2.55
" _E g %0 A2| Nom | 280
= — i Max | 3.05
7 | | Min_ | 022
w o » ' g | : 8 Mo Tos0
N | | Max | 038
; Zd Mark i i - o1z
] index - T or
-5 > - "\g 3 Min | 2365
) k D | Nom | 2390
v uuu_-__--_--_--_(;-uuu ,) Max 24'15
| ~ Ya‘o'" Min | 19.90
7T 7N Detail Y D1{ Nom | 20.00

7 - - \ N /\/./\ Max | 20.10
D3| Ref ! 18.85

U/ \-LUHDJ/'_ ____________ LLDnurIJ) 'HUU e B:C 0.65
L|

4

Sy S & f Min | 17.65
Detail W Detail X I E {Nom |17.90
I /) Al (Note 4] (Note 7) Max | 18.15
= }_ m Min 13.90
A2 & E1} Nom | 14.00
A ulln \/J Max |14.10
A [=C- SN ¢ -
{Note 3) j {Note 3) L—»‘ L} 7 E3 | Ref 12.35
_J «—B do Min | 0.65
Not e (Note 4) b— L | Nom |0.80
ote:
1. Total number of pins is 100. Max | 0.95
2. Drawing is not to scale. T {Max |0.10
3. Coplanarity of all leads shall be within 0.10 mm (difference between the highest and lowest lead Min |0
with seating plane — C — as reference). 0 Max | 75
4. Datumplane—H-islocated at mold parting line and s coincident with the bottom of the lead, where
the lead exits the plastic body. Lead pitch determined at—H -,
5. Dimensions D1 and E1 do notinclude mold protrusion. Allowable protrusion is 0.25 mm per side.
These dimensions to be determined at—H —.
6. Dimensions D3 and E3 to be centered relative to dimensions D1 and E1, respectively, £0.200 mm.
7. Tolerance window for lead skew from true position is determined at seating plane —C —.
8. For board layout and manufacturing, you may obtain engineering drawings from your LS Logic
Products marketing representative by requesting the outline drawing for package code PB. MD82PB

12-14 Specifications

B 5304804 0011800 T31 WLLC

Appendix A
The JVieW (JPEG Video ina
Window) Evaluation Kit

The JVieW Kit converts a PC into a low-cost multimedia workstation. The
JVieW (JPEG Video in a Window) Evaluation Kit consists of a 16-bit PC
AT (ISA bus) board and a software driver that drives the JVieW board from
Microsoft Video for Windows. The JVieW board is based on LSI Logic’s
L64702 JPEG Coprocessor.

The JVieW board records and plays full-motion video in a 1/4 screen win-
dow at 30 frames/second NTSC or 25 frames/second PAL. The software
driver allows use of the Microsoft Video for Windows VidCap, VidEdit,
and MediaPlayer functions to perform video capture, editing, and display.

This chapter has seven sections:

Section A.1, “Overview”

Section A.2, “Kit Contents”

Section A.3, “System Requirements”

Section A.4, “Features Summary”

Section A.5, “JVieW Board in a Multimedia PC System”
Section A.6, “JVieW Board Layout”

Section A.7, “JVieW Board Functional Description”

See LSI Logic’s JVieW (JPEG Video in a Window) Evaluation Kit User’s
Guide for more information on the JVieW Kit. Contact your local LSI
Logic sales office for more information.

A1
Overview

The JVieW Kit enables a regular PC to function as a full-powered multi-
media workstation. The JVieW Kit comes with a software driver which
allows users to use the Microsoft Video for Windows tools under
Microsoft Windows 3.1.

A-1

B 5304804 0O0L1801L 5978 MELLC

Users can acquire, digitize, and compress analog video from either a VCR,
video camera, or laserdisk, and then store the digital video data directly
onto the PC hard disk. Video clips are stored in a JPEG compressed format
embedded in an Audio Visual Interlude (AVI) file structure. Users can then
edit these video clips and display them to an overlay window on a standard
VGA monitor.

The JVieW Kit can capture 640 x 240, 320 x 240, 160 x 120, or 80 x 60
video clips in NTSC mode. The JVieW Kit can display AVI clips in what-
ever window size is specified in the header. The maximum board resolu-
tion allowed is 800 x 600.

The JVieW board and its software driver were designed to operate on a
standard IBM PC AT compatible platform (either 80386 or 80486 micro-
processors). The JVieW board can drive standard VGA or super VGA
monitors, operating in conjunction with the VGA card through the VGA
Feature Connector. The onboard frame buffer can be used as a workspace
area for multimedia tools.

A2 The following items are included with the JVieW Evaluation Kit:
Kit Contents
1. JVieW Evaluation Board
2. JVieW Software Driver on 3.5” Floppy Disk
3. VGA to JVieW Feature Connector Ribbon Cable
4. RCA Composite Video-In Cables
5. JVieW (JPEG Video in a Window) Evaluation Kit User’s Guide
6. L64702 JPEG Coprocessor Technical Manual
A3 The following is a list of hardware and software system requirements, as
System well as recommended equipment, used in setting up a JVieW Kit-based

Requirements

AZ

system for demonstration and evaluation.

1. IBM PC AT Compatible Computer

2. 80386 or 80486 Microprocessor

3. Atleast 4 Mbyte Installed Memory (8 Mbyte is recommended)
4.

A hard disk with enough free space to install the software and some
video clips (at least 100 Mbytes)

The JVieW (JPEG Video in 2 Window) Evaluation Kit

B 5304804 00116802 A0Y EELLC

5. VGA or SVGA Card with Feature Connector

6. Standard VGA or SVGA Monitor

7. Video Source, Laser Disk, or Camcorder (for Video Capture Only)
8. MS-DOS 5.0

9. Microsoft Windows Operating System, Version 3.1

10. Microsoft Video for Windows, Version 1.0

Ad This section lists the key hardware and software features of the JVieW Kit.
Features
Summary m JPEG baseline image compression and decompression

Realtime video capture from composite or SVIDEO signals

m Realtime video recording and playback of 320 x 240 NTSC or
384 x 288 PAL images

m Full size video recording and playback rate — 640 x 480 pixels at
10 frames per second for NTSC or 8 frames per second for PAL

Up to 8.25 Mbytes/second processing capability

Four programmable image size options: Full, 1/2, 1/4, and 1/8
Software frame rate control using an interrupt schedule scheme
ISA bus interface utilizing I/O mapping only

16-bit DMA channel for fast DMA transfers

Overlay of VGA display and video in a window

2 Mbyte frame buffer for display of high resolution pictures

Direct access from the system bus to the frame buffer for support of
still image applications and image processing

Supports for AVI file format and JPEG AVI

Software driver that runs under Video for Windows under Microsoft
Windows (user can use MediaPlayer, VidCap, and VidEdit tools)

A5 The IVieW board provides the video compression and decompression
JVieWBoardina capabilities that allow the user to record or playback video clips from the
Multimedia PC system hard disk or CDROM.

System

Features Summary A-3

M 5304804 0011803 7?40 EMLLC

Figure A.1

PC Multimedia
System with JVieW
Board

A4

Figure A.1 shows a block diagram of a multimedia PC system containing
the JVieW board. The figure shows the main blocks of a standard PC along
with the main blocks that allow the PC to act as a multimedia system.

Mass Speakers

Storage @ I__‘_I

A VGA Monitor Port A]
L A
| >{Camera]
Y
Video _ | JVieW [VGA Input Audio
Input Ports| = | Board Port VGA Scsl Board
A A A A
System| Port
- d oy ¥ PCATBusy Y .
LaserDisk & ")
asers '\ X 1
Y Y Y
Standard
CPU PC Memory g‘,’;ﬂ

The SCSI block is an optional enhancement that allows additional storage
beyond the standard system hard disk drive capacity, and is fast enough to
enhance record or playback speed. An audio board provides sound
enhancement and is usually used in video game applications.

The JVieW board contains four ports that communicate with the PC sys-
tem and external accessories.

Video Input Ports

There are two analog composite video input ports for NTSC or PAL signals
and one for SVIDEO (Super VHS). These ports provide a connection to
standard consumer video sources (VCR, video camera, or laserdisk). The
JVieW board captures realtime video from these ports.

VGA Input Port

This port is a standard connector on most VGA cards that allows the
JVieW board to receive digital VGA (data and sync) information and to
overlay video.

The JVieW (JPEG Video in a Window) Evaluation Kit

BN 5304804 0011804 LA? MELLC

VGA Monitor Port

The JVieW board overlays the digital video display information over the
VGA digital display information and then outputs an analog video signal
to the standard VGA or Super VGA monitor.

System Port

The PC transfers compressed data, image data or control words to or from
the JVieW board through this ISA bus interface port.

The system port is bidirectional and transfers compressed data between the
L.64702 FIFO and the system hard disk. The system port is also used for
L 64702 initialization and still image applications involving direct image
data transfer between the system hard disk and the display memory.

Ab The JVieW board is a single-slot, 16-bit ISA bus card designed to operate
JVieW Board in IBM PC ATs and compatibles. The JVieW board measures 9.9” wide
Layout and 4.3 tall, about 3/4 of a full size AT card. Figure A.2 shows the board
layout with the main components. The numbers in the figure correspond to
the numbers in the component list that follow the figure.
Figure A.2
JVieW Board Layout
= [] ®
1 T o
®
OO0 © oL
[3 L] ® @ LI o]
-ElE 0 O ®

JVielV Board Layout A-5

B 5304804 0011805 513 MELLC

The main components on the JVieW board are:

Frame Buffer (Video Memory) — two banks of 256K x 32 bits each.
Frame Buffer Serial Port Control Unit (SPC)

L64702 JPEG Coprocessor

Philips SAA7191 Digital Multistandard Decoder (DMSD) Chip
BrookTree Bt473 24-Bit True Color Video RAMDAC

BrookTree Bt478 8-Bit (256 Color Palette) VGA RAMDAC

RCA Composite Video Input Connector 1

RCA Composite Video Input Connector 2

Y X N kWD =

VGA Feature Connector
. SVIDEO Input Connector
. VGA Output Connector
. Six-Switch DIP Switch
. DMA Request Jumpers
. DMA Acknowledge Jumpers
. Interrupt Request Jumpers
. Two A/Ds
. Special Feature to control VRAM for both read and write (QSF)
. Parallel Port Controller (PPC)
. ISA Bus Interface Control Unit (PC INT)

e e e T e e T e T e S S WU
O 00 N1 N bR W N = O

Al This section describes the functional hardware characteristics of the
JVieW Board JVieW board. Figure A.3 shows a block diagram of the JVieW board and
Functional the main data and control lines. The following main functional blocks are
Description described below:

Video Capture

Video/VGA Display

Frame Buffer

Compression/ Decompression

PC Interface

A-6 The JVieW (JPEG Video in a Window) Evaluation Kit

BN 5304804 0011806 45T MALLC

Figure A.3 0 S —
JVieW Hardware Vidsa/VaA Disolay
Block Diagram I VGA Feature Connector l
%’}Tlﬁ;ﬁ:{,: e T PR
y
Serial Port Control/ | ; v
2 Chroma-Key e
Row/Col {VGA Video/VGA | ReB
-Video Select ¥
SVIDEO
VRAM
L64702 256K X 32 VIN1
VIN?2
e S—
A
_ |wesisos
¥ -
. PC/AT > Read/Write
| Transceivers Control » Control Lines
ISA Bus N
{)
N | 4
Video Capture The video capture logic has been designed and implemented using the

Philips Digital Multi-Standard Decoder (DMSD) chipset. This chipset
contains two A/D converters, the TDA8708 and TDA&709, and the
SAA7191 DMSD. The A/Ds convert the analog composite signal input
into a digital composite signal. The pixel resolution is eight bits and is
compatible with the NTSC or PAL broadcasting standards as well as with
the SVIDEO (Y/C) format. The application software may select the video
source by programming two general-purpose bits in the SAA7191.

A digital multistandard video decoder chip, the SAA7191, provides the
capability to genlock (achieve synchronization) on the incoming digital
composite video signal, output the digital image information in 16-bit
YUYV and 4:2:2 formats, and output all required video sync signals
(VSYNC, HREF, CREF) used by other control circuits for synchronization
purposes.

JVieW Board Functional Description A7

B 5304804 0011807 39 EELLC

Figure A.4 shows the video capture logic.

Figure A4 2, Video Select
Video Capture | *
VSYNG ~<—— 8
8 -t AD = SVIDEO
Y]
O DMSD
HREF -——— SAATISI ¥
CREF ~— 8 AD < VIN1
LLC ~— h < VIN2
1%c
Video/VGA The video/VGA display logic consists of two Brooktree RAMDACS, the
Display Bt473 and the Bt478, and a special purpose chroma-key circuit. The VGA

feature connector transfers the exact VGA data on the PC VGA card to the
Bt478 VGA RAMDAC. Synchronization signals are also provided
through this connector. Figure A.5 shows the video/VGA display logic
with the chroma-key circuit highlighted.

Figure A.5 4
: . VGA_OVERLAY 7
Video/VGA Display A DISPLAY_SEL
with Chroma-Key
VGA Feature »> HB
Connector » VB
| DOT_CLK R A |)
8 VGA ~ <
> >
N UIRER Bt478
EN_VIDED | Ven |
RAMDAC
VGABIank
RGB
> > Video
LDATA Video Bta73
Video
WR_CHROMA_KEY RAMDAC]

VIDEO_OVERLAY

A-8 The JVieW (JPEG Video in a Window) Evaluation Kit

5304804 0011808 222 EMLLC

The Bt478 VGA RAMDAC functions exactly like the system VGA
RAMDAC, which resides on the VGA card. Special circuitry intercepts
the system write to the system VGA RAMDAC and maintains an exact
copy of the color palette registers.

The Bt473 24-bit Video RAMDAC receives the video data directly from
the frame buffer serial port. Additionally this RAMDAC allows the appli-
cation to gamma correct the video data. In applications where gamma cor-
rection is not required, a low-cost triple DAC such as the Bt121 may be
used. The Bt473 allows you to display the video in the following formats:

24-bit True Color Mode
24-bit Bypass Mode
8-bit Gray Scale

15-bit Color

The above selections are programmable through the Bt473 command reg-
ister. The L64702 supports only the 24-bit true color and 24-bit bypass
modes when displaying decompressed data.

The chroma-key circuit is implemented by a 74F374 register and a 74F521
comparator. The system writes the chroma-key value to the 74F374, and
the 74F521 compares the value in the 74F374 to the eight-bit VGA data.
When the two values are equal, the chroma-key logic enables the Bt473
and disables the Bt478. The blank signals provided to the VGA and video
RAMDACS switch between VGA and video.

The JVieW board also uses the overlay registers of the RAMDACs. Each
RAMDAC overlay is controlled by four bits. The two RAMDAC: are con-
trolled by the eight most-significant bits of the frame buffer—four bits are
connected to the Video RAMDAC and four bits are connected to the VGA
RAMDAC. This feature allows an additional layer of overlay information
known as the o function may be used for special video effects.

Frame Buffer The frame buffer consists of two 256K x 32-bit VRAM banks. This
amount of memory allows the capture or display of images of up to 512K
pixels. The user may reduce the expense of the board by installing only one
256K x 24/32 bank, but this limitation compromises the ability of the
JVieW board to support full resolution images in both moving video and
still image applications.

] JVieW Board Functional Description A-9

BN 5304604 0011809 169 EELLC

Video memory is organized as xBGR (null, Blue, Green, and Red) in a
32-bit plane. Each of the three colors use eight bits with the most signifi-
cant eight bits set to zero.

Figure A.6 shows the frame buffer logic.

Figure A.6
Frame Buffer Block
Diagram
VADB11
RAS |
— > Logic < < < \
RASO CASD RAST CAST
ROW_COL 9, Yy ¥ ROW_COL Yy v PIX
g sP 0 SP Bl s (toRAMDAC)
SE0 SET —»
> ————i-
VDSE RAM Bank 0 VDSF RAM Bank 1
P> —_—
VT - 512x512x 32 — 512x 51232
SCLKYU_0 o SCLKYU_1
SCLK_V_0 SCLK_V_1
> PP PP
A A
 VADB Y Y .~
The frame buffer has been implemented using TMS44C251 256K x 4
VRAM components. The TMS44C251 is organized internally as a two-
dimensional array of 512 x 512 x 4, and contains a 512 x 4 serial shift reg-
ister. Currently, the JVieW board supports only the two-bank mode, in
which the frame buffer is organized as 1024 x 512 x 24/32. In the single-
bank mode, the frame buffer can be organized as 512 x 512 x 24/32. A spe-
cial serial port control circuit controls the data flow in and out of the
VRAM serial port and operates in full synchronization with the video cap-
ture and display sync signals.
The L64702 JPEG Coprocessor directly controls the VRAM parallel port.
The serial port control generates two control signals, VTRS, the new field
indicator, and VTRR, the new line indicator. These signals initiate periodic
video transfer cycles for both capture and display.
A-10 The JVieW (JPEG Video in a Window) Evaluation Kit

BN 5304804 0011810 980 EELLC

Compression/ The L64702 JPEG Coprocessor performs image compression and decom-

Decompression pression. The L64702 communicates by means of its video port with the
frame buffer in bus master fashion, delivering video information to or from
the frame buffer. The 164702 also supports frame buffer memory refresh
and frame buffer serial control cycles, which allows realtime video capture
and display.

As a slave peripheral, the L64702 communicates directly with the ISA bus
from its system port. The PC software communicates with the L64702
through the CPU I/O port using the I/O-mapped IN and OUT instructions.
The L64702 can also be programmed to initiate DMA service through the
system DMA controller. DMA transfers are fast and efficiently deliver
compressed data to and from the system memory.

The L64702 system port is an asynchronous port, which allows direct con-
nection of the ISA bus signals to the L64702. Some of these signals are for
I/O Read (IOR), I/O Write (I0W), and DMA Acknowledge (DACK). The
Chip Select signal (CS), which enables L64702 read and write operations,
originates at the PC interface logic.

Figure A.7 shows the L64702 logic.

Figure A.7

[DACK ——— 3
L64702 1§’ 1 Latch/Buffer 794> Row/Col
Compression/ DR) ~——f
Decompression o | spp <«Scp
ISAL 164702 32 o To
Bus< RD ————» » VADB E'af'f“e
WR > utrer
W_ Control Signals
05— » (VRAS,VCAS,
. VWE, VTR/OE,
VDSF) J
PC Interface The PC Interface logic, shown in Figure A8, is responsible for connecting

the JVieW local data bus (LDATA), to the PC ISA bus. The data interface
is either 8-bit or 16-bit, depending on the memory-mapped resource being
used on the JVieW board. For example, the 164702 uses 16-bit transfers,
while the RAMDAC:s use 8-bit data transfers. The address decoding logic
and control signals are implemented with a single MACH210 device. Two
eight-bit 74F245 transceivers act as buffers between the ISA data bus and
the JVieW LDATA bus.

JVieW Board Functional Description A-11

B 5304404 0011811 817 MMLLC

Figure A.8 ADD9
PC ISA Bus Ao
Interface AD0e _—
ADDB
(ADDR)
Address | 1/0_SEL
Switches [—» Compare
PC/AT < ADDR 6 vy
B —
u ow
—T Read/Wri
ea rite
e Mach 210 Control Lines
§ DACK
CARD_SEL
Y
245
SDB v —» LDATA
245

A-12 The VieW (JPEG Video in 8 Window) Evaluation Kit

B 5304804 0011812 753 BELLC

Appendix B
Huffman Table Software Listing

This section contains a listing of the software source code supplied by LSI
Logic to generate the Huffman tables that reside in the L64702 RAM.
When you order the L64702, you receive free of charge a 3 1/2” PC-format
diskette with the Huffman Table source code. The Huffman Table diskette
is included free with your first L64702 order. Additional diskettes may be
ordered by calling 800.828.4LSI extension 7468. You may also download
the Huffman Table source code from the LSI bulletin board by calling
408.433.7578.

* This file generates the ram contents for the RR640 and RR56 rams
* in the L64702 VLC module.
*

* Copyright (C) 1992 LSI Logic Corporation. All rights reserved.
*/

#include <stdio.h>
#include <strings.h>

#ifndef lint

static char rcsid[] = "$Header: huffRamGen.c,v 2.2 92/11/17 09:40:43 zorro'!hjh
Exp $ ";

#endif

#define TRUE 1
#define FALSE(

#define AC 1
#define DC 0

#define SEL_HUFF_DC01
#define SEL_HUFF_DC12
#define SEL_HUFF_AC04
#define SEL_HUFF_AC18

! Huffman Table Software Listing B-1

—

BN 5304804 0011813 k9T EELLC

#define HUFF_RAM640_SIZE640
#define HUFF_RAMS6_SIZE 56

int RR56 [HUFF_RAM56_SIZE];
int RR640[HUFF_RAM640_SIZE];

/*
* The Huffman code table definition sequences.
* These are hard coded defaults for convenience.
*/
#define HuffDCLumSize 28
/* First 16 entries are code group size for code
* length group from 1 to 16.
* The remaining 12 entries are the actual code symbols.
*/
int HuffDCO([28] =
{
/* length specifications */
0x00, 0x01, 0x05, Ox01, 0x01, 0x01, 0x01, 0Ox01,
0x01, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0Ox00,
/* symbol definitions */
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, O0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B
}i
int HuffDC1[28] =
{
/* length specifications */
0x00, 0x03, 0x01, 0x01, Ox01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
/* symbol definitions */
0x00, 0x01, Ox02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B
}i

#define HuffACLumSize 178
/* First 16 entries are code group size for code

* length group from 1 to 16.

* The remaining 162 entries are the actual code symbols.
*/

B2 Huffman Table Software Listing

B 5304804 001181y 526 M1 C

int Huffac0[178] =

{
/* length specifications */
0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03,
0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01l, 0x7D,

/* symbol definitions */
0x01, 0x02, 0x03, 0x00, Ox04, 0x1l, 0x05, 0x12,
0x21, O0x31, Ox41l, 0x06, 0Ox13, 0x51, Ox61, 0x07,
0x22, 0x71, Oxl1l4, 0x32, 0x81, 0x91, Oxal, 0x08,
0x23, 0x42, 0xB1l, OxCl, 0x15, 0x52, 0xDl, OxFO,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, O0xl6,
0x17, 0x18, 0x19, Oxl1la, 0x25, Ox26, 0x27, 0x28,
0x29, Ox2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3A, 0x43, 0x44, 0Ox45, 0x46, 0x47, 0x48, 0x49,
Oxd4a, 0x53, 0x54, O0x55, 0x56, 0x57, 0x58, 0x59,
0x5A, 0x63, 0x64, 0Ox65, 0x66, 0x67, 0x68, 0x69,
0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7A, 0x83, 0x84, Ox85, 0x86, 0x87, 0x88, 0xB9,
0OxB8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, O0x9Aa, OxAZ, 0xA3, OxA4, 0xAS5, 0xA6, OxA7,
0xa8, 0xA9, OxAA, 0xB2, 0xB3, 0xB4, OxB5, 0xB6,
0xB7, 0xB8, 0xB9, OxBA, 0xC2, 0xC3, 0xC4, O0xC5,
0xC6, 0xC7, 0xC8, 0xC9, 0xCa, OxD2, 0xD3, 0xD4,
0xD5, 0OxD6, 0xD7, 0xD8, 0xD9, OxDA, O0xEl, 0xE2,
0xE3, 0xE4, 0xES5, OxE6, 0xE7, OxEB8, O0xE9, OxEA,
0xFl, OxF2, 0xF3, 0xF4, OxF5, OxF6, 0xFr7, OxF8,
0xF9, OxFA

}:

int HuffAC1(178] =

{ /* length specifications */
0x00, 0x02, 0x01, O0x02, 0x04, 0x04, 0Ox03, 0x04,
0x07, 0x05, 0x04, 0x04, 0x00, 0x01, O0x02, 0x77,

/* symbol definitions */

0x00, Ox01, 0x02, Ox03, 0xl1ll, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, O0x4l1l, 0x51, 0x07, 0x61l, 0x71,
0x13, Ox22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xAal, O0xB1l, 0xCl, 0x09, 0x23, 0x33, 0x52, O0xFO,
0x15, O0x62, 0x72, OxDl, 0x0A, Oxlé6, 0x24, 0x34,
0xEl, Ox25, O0xFl, Ox17, 0x18, 0x19, 0xla, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, Ox3A, 0x43, O0x44, 0x45, Ox46, 0x47, 0x48,
0x49, 0Ox4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, Ox5A, 0x63, Ox64, 0x65, 0x66, 0x67, 0x68,
0x69, 0Oxe6Aa, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8A, 0x92, 0x93, 0x9%4, 0x95, 0x96,

Huffman Table Software Listing B-3

5304804 0011815 u4b2 EALLC

0x97, 0x98, 0x99, 0x9A, OxaA2, OxA3, 0xAd, 0xAS,
0xA6, 0xA7, O0xA8, 0xA9, Oxad, 0xB2, 0xB3, 0xB4,
0xBS5, 0xB6, 0xB7, 0xB8, 0xB9, OxBA, 0xC2, 0xC3,
0xC4, 0OxC5, 0OxCé6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2,
0xD3, 0xD4, 0OxDS5, 0xD6, 0xD7, 0xD8, 0xD9, OxDA,
0xE2, 0OxE3, 0xE4, OxES, OxE6, OxE7, OxE8, OxE9,
OxXEA, OxF2, O0xF3, 0xF4, O0xF5, OxF6, OxF7, OxF8,
0xF9, O0xFA

}:

int tableSelectMask= 0;

FILE *fpin, *fpout;

int linenum=0;

int ac;

char *av([20];

char line[256];

char filename[64]= "LOAD_RAM_DATA";
int encode_mode=1;

int error_flag=0;

/* Forward Declarationsg: */
void parse_table_def_file();
void read_huff_table_def();
void jpHuffBuildRam() ;

void jpGenDecodeRam() ;

int get_base_offset();

int get_num_leadingl():
void jpGenOffset();

int StrIsWhite();

void StrRemoveTrSpace();
int scan{();

main(argc, argv)
int argc;
char **argv;

int element;

/* Print title: */

printf ("\n\nL64702 Huffmann Ram Data Generation Program version 1.0:\n"};
printf ("Copyright (C) 1992 LSI Logic Corporation.\n");

printf("All rights reserved.\n\n");

/* Parse command line arguments: */
if (argc <2)
§

B-4 Huffman Table Software Listing

5304804 001181k 379 EBLLC

fprintf (stderr, "usage: %s SPEC_INPUT_FILE_NAME
[output_file_name] [dec]\n", argv[0]);

exit(1l);
}
else
{
if (! (fpin=fopen{argv([1l], "r"})))
{
fprintf (stderr, "%s error: cannot read file %s!\n", argv[0],
argv(l]);
exit(1l);
}
if (argc>=3)
(void) strcpy(filename, argv[2]);
if (! {fpout=fopen(filename, "w")))
{
fprintf (stderr, "$s error: cannot write file %s!\n", line);
exit(1);
}
printf ("reading Huffmann Table definitions from file %s\n",
argv(l]};
printf ("Huffmann Ram data will be in file %s\n", filename);
if (argc >3 && !strcmp("dec",argv([3]))
{
printf ("generating Huffmann ram contents for decoding
..aAnt);
encode_mode = 0;
}
else
printf ("generating Huffmann ram contents for encoding
...A\An");
}

/* Read input file for table definitions: */
parse_table_def_file(fpin);

if (error_flag)
{
fprintf(stderr,"%d errors found! Ram data generation
aborted!\n", error_£flag);
exit(1l);
}

/* Build the arrays for the Huffmann rams: RR640, RR56 */
jpHuffBuildRam(encode_mode) ;

Huffman Table Software Listing B-5

5304804 D011817 235 EALLC

/* Print out the ram data into output file: */
fprintf (fpout, "HUFFMANN_RAM\nSTART ADDRESS 000\nSIZE 696\n");
for (element=0; element < HUFF_RAM640_SIZE; element++)

fprintf (fpout, "%4.4x\n", RR640[element]):;
for (element=0; element < HUFF_RAMS6_SIZE; element++)

fprintf (fpout, "$4.4x\n", RR56[element]);

fclose(fpin);
fclose(fpout);
printf ("done.\n");
return(0) ;

}

/* Read in the table definitions. Huffmann tables
* defined as in JPEG standard.
* See sample input file for syntax.
*x/
void
parse_table_def_file(fpin)
FILE * fpin;

{
/* Read in each table definitions one at a time: */
while (!StrGetLine(fpin, line, 256, &linenum))
{
/* lines beginning with '*' are comments. */
if (line[0] == '*')
continue;
scan(line, &ac, av, 12);
if (!strcmp("#HUFF_DC", av[0]})
read_huff_table_def (fpin, DC, HuffDCO0, HuffDCl, atoi(av([l]),
&linenum) ;
else if (l!strcmp("#HUFF_AC", av{0}))
read_huff_table_def (fpin, AC, HuffACO, Huffacl, atoi(av(l]),
&linenum) ;
else
fprintf (stderr, "error at line %d: unknown keyword %s!\n",
linenum, av[0]);
}

B-6 Huffman Table Software Listing

E3 5304804 0011818 171

sl L L c

if (tableSelectMask != 15)

{
fprintf (stderr, "error: Table definitions are incomplete.\n");
fporintf(stderr, " All tables must be generated together!\n"});
error_flag++;
}
}
void
read_huff_table def (fp, ac_dc, tablel, tablel, table num, linenum)
FILE * fp;
int ac_dc;
int *tablel, *tablel:;
int table_num, *linenum;
{

int item;
int lineCt;
int num_of_para;

if (table_num >1)
{
table_num= 0;
fprintf(stderr, "error at line %d: Illegal table number! wusing 0
instead.\n",

*linenum) ;
}
if (ac_dc == DC)
{
if ((table_num==0 && (SEL_HUFF_DCO & tableSelectMask)) ||

(table_num==1 && (SEL_HUFF_DC1l & tableSelectMask)))
{
fprintf (stderr, "error at line %d: Table %d
redefined!\n", *linenum, table_num);
error_flag++;
}
else
tableSelectMask |= (l<<{table_num));
num_of_para =28;

Huffman Table Software Listing B-7

BN 5304804 0011819 008 EMLLC

else

if ((table_num==0 && (SEL_HUFF_ACO & tableSelectMask)) ||
{table_num==1 && (SEL_HUFF_ACl & tableSelectMask)))
{
fprintf (stderr, "error at line %d: Table %d
redefined!\n",*linenum, table_num);
error_flag++;

}
else
tableSelectMask |= (4<<(table_num)});
num_of_para =178;
}
for (lineCt=0; lineCt<num_of_para;)
{
if (!StrGetLine(fp, line, 256, linenum))
{
if (line[0]=='*') continue; /* comments */
if (line[0]=="#"') /* Beginning of next key word */
{

fprintf(stderr, "error at line %d: insufficient
parameters in Huffmann spec!\n",
*1linenum) ;

error_flag++;

return;
}
scan{line, &ac, av, 12):
for (item=0; item<ac ;item++)

{
if (table_num)
sscanf{av[item], "$x", (tablel+lineCt));
else
sscanf(av[item], "$x", (table0+lineCt));
lineCt++;
}
}
else
{

fprintf (stderr, "error at line %d: insufficient parameters in
Huffmann spec!\n",
*1linenum) ;
error_flag++;
return;

88 Huffman Table Software Listing

5304804 0011820 82T BALLC

jpHuffBuildRam --
Construct the Rams for encoding or decoding.

This procedure initializes all four tables (2 AC, and 2 DC)
according to the Huffman code table definition sequences
HuffDCO, HuffDCl, HuffAC0, and HuffACl.
Results:
The required data to be loaded into the RR640 and RR56
rams. Results in array RR640, and RR56.

Tricks/Warnings/Notes:

Address map for the RR640 ram is as follows for decoding:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

For AC
tofmmm o o= + to +-+------- o ———— o +
lojojojojo]ojol0]0]|table] |1]0]0]|1]0]1]|1]|1|1]|table]
B bttt oo R + totomm R et +
For DC
b ———— +-= === +————= + to +—-+-——----- t-mm——— +———== +
|1]0]0]1]1]0]0]|0]|0|table] [1]0]0]1]1]1]|1]|1|1]|table]
ot—m———— o +-———- + t—t——————— - +-—=== +
B e e e e e = = = = A — e e - an o - - A = — o
*/
void

jpHuffBuildRam(encode)
int encode;

int max_tail_len[16];/* maximum number of trailing bits
* in the leading one
groups.
* Tail length exclude
leading one and
* first zero.
*/
int first_code_or_addr[l6];/* group first code for encode and
* group first address
for decode.
*/
int huff_table_addr[304];
int huff_table_content[304];
int num_content;
int max_code_len;
int dc ;
int table;
int ctl, ct2;

Huffman Table Softwarg Listing B3

B 5304804 0011821 7kb mLLC

int *bits; /* pointer to table definition. */

/* Initialize the arrays so that unused location

* can be located easily.

*/

for (ct2=0; ct2<HUFF_RAMS6_SIZE; ct2++)
RR56([ct2] = Oxfff;

for (ct2=0;ct2<HUFF_RAM64(0_SIZE;ct2++)
RR640[ct2] = Oxfff;

/* there are 4 tables */
for (ctl=0; ctl<4; ctl++)

{
switch (ctl)
{
case 2:
bits = HuffDCO;
de = 1;
table=0;
break;
case 3:
bits = HuUffDCl;
de = 1;
table = 1;
break;
case 0:
bits = HuUffAcCo;
dec = 0;
table=0;
break;
case 1:
bits = HuffAcCl;
de = 0;
table = 1;
break;
}
max_code_len = (dc?12:16);
if (encode)
{
jpGenOffset{bits, dc, first_code_or_addr,
huff_ table_addr,huff_table_content,
&num_content) ;
for (ct2=0; ct2 < max_code_len; ct2++)
{
RR56[(((dc<<4) |ct2)<<1) |table] =
first_code_or_addr(ct2];
}
}

B-10 Huffman Table Software Listing

B 5304804 0011822 LT EMELLC

else
{
jpGenDecodeRam(bits, d¢, first_code or_addr,
max_tail_len, huff_ table_addr,
huff_table_content, &num_content);

for (ct2=0; ct2 < max_code_len; ct2++)
{
RR56[{ { (dc<<4) |ct2)<<1) |table] =

({first_code_or_addr[ct2]&(0x3£f))<<3) |
(max_tail_len[ct2]&7);
}
}

for (ct2=0; ct2 <num_content; ct2++)
{
RR640 [(huff_table_addr[ct2]<<1l) |table] =
huff_ table_content[ct2];

}

/* Generate the contents of the 2 rams for decoding according to
* the huffmann table sequence bits, and events.
*x/
void
jpGenDecodeRam(bits, dc,
grp_first_addr, max_tail_len,
huff_table_addr, huff_table_content, num_content)
int bitsl[];
int dc;
int max_tail_len[16];
int grp_first_addr([1l6];
int huff_table_addrl[];
int huff_table_content[];
int *num_content;

int *events;/* symbols represented by code words. */
int code[162]; /* Huffmann code words. */
int code_len[162];
int code_leadingl_grpl[162];/* Leading group that the code
* word is in.
*/
int ¢t, ctl, num;
‘ int max_code_len;
i int num_leadingl, new_max;
int base_code, num_code;

Huffman Table Software Listing B-11

B 5304804 0011823 539 MELLC

int base_addr;

int base_offset;

int table_content;
int code_tail_len;
int num_addr_to_£ill;

events = bits+l6;
for (ct=0; ct < 16; ct++)
max_tail_len(ct] = 0;

max_code_len = (dc?12:16);

num_code= 0;
base_code= 0;
num_leadingl= 0;

/* Generate all codewords and update the leading one group
* gize and their maximum tail length.
*/
for (ct=0; ct<max_code_len; ct++)
{
for (num=bits[ct]; num>0; num--)
{
num_leadingl = get_num_leadingl (base_code, ct};
/* taking off the first 0 */
if ((new_max=ct-num_leadingl) > max_tail_len[num_leadingl])
max_tail_len[num_leadingl] = new_max;
code[num_code] = base_code++;
code_leadingl_grplnum_code] = num_leadingl;

/* code len is actually code_len -1 */
code_len[num_code++] = ct;
}
base_code <<=1;
}

/* Compute the leading one group first addresses. */
base_addr = (dc?0x130:0);
for (ct=0; ct<max_code_len; ct++)
{
grp_first_addr[ct] = base_addr;
base_addr += (l<<max_tail_len[ct]);

B-12 Huffman Table Software Listing

BN 5304804 0011824 475 EELLC

*num_content= 0;
for (ct=0; ct<num_code; ct++)
{
/* possibly more than one address space to fill for one code. */
base_offset = get_base_offset(code(ct], code_lenct],
code_leadingl_grplct],
1);
base_offgset = base_offset +
grp_first_addr[code_leadingl grplctl];

/* excluding first 0 */

code_tail_len = code_len[ct] - code_leadingl grpf{ctl]:;

num_addr_to_£fill = 1 <<(max_tail_len[code_leadingl grplct]] -
code_tail_len);

table_content = {events[ctl<<4) | code_len[ct];
for (ctl=0; ctl<num_addr_to_fill; ctl++)
{
/* need to be << by 1 and bit or with table # */
huff_table_addr[*num_content] = base_offset +
(ctl<<code_tail_len);
huff_table_content[*num_content] = table_content;

(*num_content) ++;

}

/* The offset is the trailing bits of the codeword.
* HOWEVER, the significance of the trailing bits are
* reversed for hardware reason (reduces hardware)}.

*/
int
get_base_offset(code, code_len, num_leadingl, flag)
int code;

int code_len;
int num_leadingl;
int flag; /* two usages */

int ct;
int mask=0;
int base_offset=0;

/* Use this only if the leadingl and first zero hasn't been
* ghifted yet.
* Shity! But I don't care
*/
; if (flag)
| mask = 1<< (code_len-num_leadingl-1);

Huffman Table Software Listing B-13

B 5304804 0011825 301 MELLC

else
mask = 1l<< 15;
for (ct=0; ct <code_len-num leadingl; ct++)

{
if (mask & code)
base_offset |= (l<<ct);
mask >>= 1;
}

return base_offset;

int

get_num_leadingl (code, code_len_minusl)
int code;
int code_len_minusl;

int mask;
int ct;

mask = l<< code_len _minusl;
for (ct=0; ct<= code_len minusl; ct++)
{

if (! (mask & code))

break;

mask >>= 1;
}
if (ct >= 16)
{

printf ("ERROR: DETECTED 16 or more leading ones.\n");

}

return (ct);

B-14 Huffman Table Software Listing

B 5304804 001182k 248 EELLC

JF e
*
* jpCGenOffset --
* Generate the ram contents for encoding.
%
K o e e e ————— e = - ————— = A = = — - - ———
*/

void

jpGenOffset (bits, de¢, firstcode,
huff_table_addr, huff_table_content, num _offset)
int *bits;
int dc;
int *firstcode;
int huff_table_addr(];
int huff_table_content(];
int *num_offset:;

int tmp;

int addr;

int i, J;

int *events;
int code;

int tail_bit;
int num_leadl;
int shift;

int offset;

*num_offset = 0;
events = bits + 16;

tmp = 0;

code = 0;

for (i=0; i<16; i++)
{

firstcode[i] = Oxfff; /* default */
for (j=0;: j<bits[il; j++)
{
/* The firstcode for encoding is stored with 12 bit.
* 4 msb indicating the number of leading 1ls,
* and the last 8 bits for the second part of the
* cordword. The second part is stored aligned to msb.

*/
if (!3)
{
num_leadl = get_num leadingl{code, 1i);
shift = 8-(i+l-num_leadl);
tail_bit = Oxff & (code << shift);
firstcode[i] = (tail_bit<<4) | num_leadl;
}

Huffman Table Software Listing B-15

M 5304804 0031827 184 WELLC

code++;

if (de)
addr

0x100|events [tmp+3];
else
addr = events[tmp+j];

/* address need to be << by 1 and bit or with table # */
huff_table_addr|[*num_offset] = addr;

/* 1 is the codelength and j is the offset.

* j is stored in the top 8 bits; aligned towards msb.

* Need to know number of leading 1.

*/
offset = 0xff & (j << shift);
huff_table_content[*num_offset] = (offset<<4) | i;

(*num_offset) ++;
}
/* update code */
code <<=1;
tmp += bits[i];

}
}
/* __
*
* scan --
* Obtain arguments from a buffer. Arguments are separated by
* spaces. This code is plaigarized from ~justin/dp/v4/scan.c
*
* Results:
* 0 if done, else 1.
*
* Side Effects:
*
K e e e o o o = = = A e et e = ———————— e o o+ = = =
*/
int
scan(buff, ac, av, maxac)
char *buff;
int *ac;
char **av;
int maxac;
{
register char *p;
*ac = 0;
*av = (char *) 0;

8-16 Huffman Table Software Listing

5304804 0011828 010 MALLC

p = buff;

scan_loop:

if (*ac >= maxac) return;

/* skip over blanks and tabs to the next word */
/* This is for reading scl tpt input format only.

while ((*p == ') || (*p == "\t") || (*p == '."))
*/
while ({(*p == ' ') || (*p == '"\t")}
{
*p= I\OI;
++D;
}

/* return if we reached the end of the buffer */
if (*p == '\n') *p = '\0';

if (*p == '\0') return;
*ac += 1;

*av++ = pi

*av = (char *) 0;

/* advance pointer past the end of the word */

do
{
++p;
} while ((*p != ' ")&&(*p != '"\t")&&(*p != '\n")&&(*p i= '\0"));
/* This is for reading scl tpt input format only.
} while ((*p != ' '"}&&(*p != '\t')&&{*p != '\n')&&(*p != "\0')&&(*p != L))
*/

goto scan_loop;
/* scan */

StrGetLine ##
Get a new non-blank line from fp.

Return Value:
-1 if eof reached before a non-blank line can be found.
0 otherwise.

Side effects / Tricks / Warnings / Notes:
File pointer moved. Linenum is updated.

Huffman Table Software Listing B-17

m 5304804 0011429 T57 EELLC

StrGetLine(fp, line, size, linenum)

FILE *fp;
char *line;
int size;
int * linenum;
{
while (1)
{
if (!fgets(line, size, fp))
return 1;
(*linenum) ++;
if (!StrIsWhite(line, TRUE))
break;
}
StrRemoveTrSpace(line) ;
return 0;
1
int

StrIsWhite(line, commentok)
char *line;
short commentok;/* TRUE means # comments are considered all-white */

{
if ((*line == '*') && (*(line+l) != '/') && commentok)
return TRUE;
while(*line)
{
if (!isspace(*line) && (*line != '\n'))
return FALSE;
line++;
}
return TRUE;
}
void
StrRemoveTrSpace(s)
char *s;
{
int ct;
char *ptr;
ct = strlen(s)-1;
ptr = s+ct;
while (*ptr == ' ' || *ptr == '\n' || *ptr == '\t')
ptr--;
*(ptr+l) = '\0'; |
}

B-18 Huffman Table Software Listing

B 5304804 D011830 779 EELLC

Appendix C
Customer Feedback

We would appreciate your feedback on this document. Please copy the fol-
lowing page, add your comments, and fax it to us at:

LSI Logic Corporation
Microprocessor Publications
M/S G-812

Fax 408.433.8989

If appropriate, please also fax copies of any marked-up pages from this
document.

IMPORTANT: Please include your name, phone number, FAX number,
and company address so that we may contact you directly for clarification
or additional information. Thank you for your help in improving the qual-
ity of our documents.

C-1

